The diagonal BD of a parallelogram …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Given: The diagonal BD of a parallelogram ABCD intersects the line segment AE at the point F, where E is any point on the side BC

To prove: DF {tex} \times{/tex} EF = FB {tex} \times{/tex} FA
Proof: In {tex}\triangle {/tex} FBE and {tex}\triangle {/tex} FDA,
{tex}\angle{/tex} FBE = {tex}\angle{/tex} FDA ........(1) .........[Alt.Int. {tex}\angle{/tex} s]
{tex}\angle{/tex} BFE = {tex}\angle{/tex} AFD (2) ............[Vert. opp. {tex}\angle{/tex} s]
In view of (1) and (2),
{tex}\triangle {/tex}FBE ~ {tex}\triangle {/tex}FDA ..........AA similarity criterion
{tex}\therefore {/tex} {tex}\frac{{EF}}{{AF}} = \frac{{FB}}{{FD}}{/tex} .......... {tex}\because {/tex} Corresponding sides of two similar
{tex}\Rightarrow {/tex} {tex}\frac{{EF}}{{FA}} = \frac{{FB}}{{DF}}{/tex}
{tex}\Rightarrow {/tex} DF {tex} \times{/tex} EF = FB {tex} \times{/tex} FA
0Thank You