Find the coordinate of the point …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
Let P (x1, y1) Q(x2, y2) and R(x3, y3) be the points which divide the line segment AB into four equal parts.

Then, P divides AB in the ratio 1 : 3 internally.
{tex}x=\frac{mx_2+nx_1}{m+n}{/tex}
{tex}\therefore x _ { 1 } = \frac { ( 1 ) ( 2 ) + ( 3 ) ( - 2 ) } { 1 + 3 }{/tex}
{tex}= \frac { 2 - 6 } { 4 } = - \frac { 4 } { 4 } = - 1{/tex}
{tex}y=\frac{my_2+ny_1}{m+n}{/tex}
{tex}y _ { 1 } = \frac { ( 1 ) ( 8 ) + ( 3 ) ( 2 ) } { 1 + 3 }{/tex}
{tex}= \frac { 8 + 6 } { 4 } = \frac { 14 } { 4 } = \frac { 7 } { 2 }{/tex}
So, {tex}\mathrm { P } \rightarrow \left( - 1 , \frac { 7 } { 2 } \right){/tex}
Also, Q divides AB in the ratio 1 : 1 i.e.
Q is the mid point of AB
{tex}x _ { 2 } = \frac { - 2 + 2 } { 2 } = 0{/tex}
{tex}y _ { 2 } = \frac { 2 + 8 } { 2 } = \frac { 10 } { 2 } = 5{/tex}
So, {tex}Q \rightarrow ( 0,5 ){/tex}
and, R divides AB in the ratio 3 : 1
{tex}\therefore x _ { 2 } = \frac { ( 3 ) ( 2 ) + ( 1 ) ( - 2 ) } { 3 + 1 }{/tex}
{tex}= \frac { 6 - 2 } { 4 } = \frac { 4 } { 4 } = 1{/tex}
{tex}y _ { 3 } = \frac { ( 3 ) ( 8 ) + ( 1 ) ( 2 ) } { 3 + 1 }{/tex}
{tex}= \frac { 24 + 2 } { 4 } = \frac { 26 } { 4 } = \frac { 13 } { 2 }{/tex}
So, {tex}\mathrm { R } \rightarrow \left( 1 , \frac { 13 } { 2 } \right){/tex}
0Thank You