ABC ia triangle coordinates of whose …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
ABC ia triangle coordinates of whose vertex a aer (0,-1).d and e respectively are the mid points of the side ab and AC and their coordinates are (1,0) and (0,1) respectively.if f is the midpoint of BC find the area of triangle ABC and triangle def
Posted by Vijay Kumar 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
According to the question, A(0, - 1),D(1, 0) and E(0,1).

Let coordinates of B and C are (x2, y2) and (x3, y3) respectively.
D is mid-point of AB,
{tex}\therefore{/tex} 1 = {tex}\frac { 0 + x _ { 2 } } { 2 }{/tex}
{tex}\Rightarrow{/tex} x2 = 2
and 0 = {tex}\frac { - 1 + y _ { 2 } } { 2 }{/tex}
{tex}\Rightarrow{/tex} y2 = 1
{tex}\therefore{/tex} Coordinates of B are (2, 1)
E is mid-point of AC
{tex}\therefore{/tex} 0 = {tex}\frac { 0 + x _ { 3 } } { 2 }{/tex}
{tex}\Rightarrow{/tex} x3 = 0
and 1 = {tex}\frac { - 1 + y _ { 3 } } { 2 }{/tex}
{tex}\Rightarrow{/tex} y3 = 3
{tex}\therefore{/tex} Coordinates of C are (0, 3)
Area of {tex}\triangle{/tex}ABC
{tex}= \frac { 1 } { 2 }{/tex} {tex}[0(1 - 3) + 2(3 + 1) + 0(-1 + -1)]{/tex}
{tex}= \frac { 1 } { 2 }{/tex} {tex}\times{/tex} 8 = 4 sq. units
F is mid-point of BC
{tex}\therefore{/tex} Coordiantes F are {tex}\left( \frac { 2 + 0 } { 2 } , \frac { 1 + 3 } { 2 } \right){/tex}, i.w, (1, 2).
Area {tex}\triangle{/tex}DEF
{tex}= \frac { 1 } { 2 }{/tex} {tex}[1(2 - 1) + (1 - 0) + 0(0 - 2)]{/tex}
{tex}= \frac { 1 } { 2 }{/tex} [1 + 1] = 1 sq. units
0Thank You