Sin3x + sin3(2π/3 + x) + …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Vivek Kumar 8 years, 9 months ago
- 1 answers
Related Questions
Posted by Sana Dharwad 1 year, 4 months ago
- 0 answers
Posted by Sethpoulou Apoulou 1 year, 5 months ago
- 0 answers
Posted by Ashish Chaudhary 1 year, 4 months ago
- 1 answers
Posted by Nitin Kumar 1 year, 4 months ago
- 1 answers
Posted by Manoj Thakur 1 year, 4 months ago
- 0 answers
Posted by Gurleen Kaur 1 year, 4 months ago
- 0 answers
Posted by Ananya Sv 1 year, 4 months ago
- 1 answers
Posted by Sabin Sultana 1 year, 4 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Naveen Sharma 8 years, 9 months ago
Ans. we know
\(sin^3x = sinx(sin^2x)\)
\(=>{ sin x (1-cos2x)\over2}\)
\(=> {1\over 2} [{sin x -sin x cos2x}]\)
\(=> {1\over 2} [{ sin x - {1\over 2} [sin (x+2x) +sin (x-2x)]}]\)
\(=> {1\over 2} [{ sin x - {1\over 2} [sin 3x -sin x}]]\)
\(=> {1\over 2}\times{1\over 2} [{2 sin x - sin 3x +sin x}]\)
\(=> {3sin x - sin 3x \over4}\) (1)
Similarly,
\(=> sin^3({{2\pi\over 3} +x})= {3sin ({{2\pi\over 3 }+x })- sin (2\pi +3x )\over4}\)
\(=> {3[sin ({{2\pi\over 3 })cos x +sin xcos( {2\pi\over 3} })]- sin 3x\over4} \)
\(=> {3[{\sqrt3\over 2}cos x -{1\over 2}sin x)]- sin 3x\over4} \)
\(=> {3\sqrt3cos x -3sin x- 2sin 3x\over 8} \) (2)
Similarly,
\(=> sin^3({{4\pi\over 3} +x})= {3sin ({{4\pi\over 3 }+x })- sin (4\pi +3x )\over4}\)
\(=> {3[sin ({{4\pi\over 3 })cos x +sin xcos( {4\pi\over 3} })]- sin 3x\over4} \)
\(=> {3[(-{\sqrt3\over 2 })cos x +sin x({-1\over 2})]- sin 3x\over4} \)
\(=> {-3\sqrt3cos x -3sin x-2sin 3x\over 8} \) (3)
From (1),(2) and (3)
\(=> sin^3{x}+ sin^3({{2\pi\over 3} +x}) + sin^3({{4\pi\over 3} +x})\)
\(=>{3sin x - sin3x \over 4}+ {3\sqrt3cos x -3sin x- 2sin 3x\over 8} + {-3\sqrt3cos x -3sin x- 2sin 3x\over 8} \)
\(=>{1\over 8}[{6sin x - 2sin3x + 3\sqrt3cos x -3sin x- 2sin 3x -3\sqrt3cos x -3sin x- 2sin 3x}] \)
\(=>{1\over 8}[ {- 6sin 3x}] = {-6\over 8} {sin 3x} \)
\(=> {-3\over 4}{sin 3x} = RHS \)
Hence Proved
1Thank You