Lim x tends to 0 (Tanx - sinx …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Vivek Kumar 8 years, 9 months ago
- 1 answers
Related Questions
Posted by Ananya Sv 1 year, 4 months ago
- 1 answers
Posted by Sabin Sultana 1 year, 4 months ago
- 0 answers
Posted by Gurleen Kaur 1 year, 4 months ago
- 0 answers
Posted by Manoj Thakur 1 year, 4 months ago
- 0 answers
Posted by Sana Dharwad 1 year, 4 months ago
- 0 answers
Posted by Ashish Chaudhary 1 year, 4 months ago
- 1 answers
Posted by Sethpoulou Apoulou 1 year, 5 months ago
- 0 answers
Posted by Nitin Kumar 1 year, 4 months ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Naveen Sharma 8 years, 9 months ago
Ans. \(\lim_{x \to 0} {tan x - sin x \over x^3}\)
=> \(\lim_{x \to 0} {{sin x\over cos x} - sin x \over x^3}\)
=> \(\lim_{x \to 0} {sin x({1\over cosx } - 1) \over x^3}\)
=> \(\lim_{x \to 0} {sin x(1 - cosx) \over x^3 . \space cos x }\)
=> \(\lim_{x \to 0} {[{1\over cos x}. {sin x \over x} .{ 1 - cosx \over x^2 }}]\)
=> \(\lim_{x \to 0} {[{1\over cos x}. {sin x \over x} .{ 2sin^2{x\over 2} \over x^2 }}]\)
=> \(2\lim_{x \to 0} {[{1\over cos x}. {sin x \over x} .{ sin{x\over 2} \over x}.{ sin{x\over 2} \over x}}]\)
=> \(2\lim_{x \to 0} {[{1\over cos x}. {sin x \over x} .{1\over 2}{ sin{x\over 2} \over {x\over 2}}.{1\over 2}{ sin{x\over 2} \over {x\over 2}}}]\)
=> \(2[\lim_{x \to 0} {{1\over cos x}\times \lim_{x \to 0}{sin x \over x} \times \lim_{x \to 0}{1\over 2}{ sin{x\over 2} \over {x\over 2}}\times \lim_{x \to 0}{1\over 2}{ sin{x\over 2} \over {x\over 2}}}]\)
=> \(2[\lim_{x \to 0} {{1\over cos x}\times \lim_{x \to 0}{sin x \over x} \times \lim_{{x\over 2} \to 0}{1\over 2}{ sin{x\over 2} \over {x\over 2}}\times \lim_{{x\over2} \to 0}{1\over 2}{ sin{x\over 2} \over {x\over 2}}}]\) [as x tends to zero, x/2 also tends to zero]
=> \(2\times 1 \times 1 \times {1\over 2}\times {1\over 2} = {1\over 2}\)
1Thank You