No products in the cart.

Derivative of cube root of tanx …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Derivative of cube root of tanx by first principle

  • 1 answers

Naveen Sharma 8 years, 4 months ago

Ans. 

Derivative of 3tanx by First Principle is given by:

=>f(x)=limh0 3tan(x+h)3tanxh

=>limh0 3sin(x+h)cos(x+h)3sinxcosxh

=>limh0 3sin(x+h)cos x3sinx cos(x+h)h3cos(x+h)cosx

=>limh013cos(x+h)cosx. limh0 3sin(x+h)cos x3sinx cos(x+h)h

=>13cos(x+0)cosx. limh0 3sin(x+h)cos x3sinx cos(x+h)h

=>13cos2x. limh0 3sin(x+h)cos x3sinx cos(x+h)h×[(sin(x+h)cos x)23+(sinx cos(x+h))23+3sin(x+h)cosx. cox(x+h)sinx][(sin(x+h)cos x)23+(sinx cos(x+h))23+3sin(x+h)cosx. cox(x+h)sinx]   

=>13cos2x. limh0 sin(x+h)cos xsinx cos(x+h)h[(sin(x+h)cos x)23+(sinx cos(x+h))23+3sin(x+h)cosx. cox(x+h)sinx]                       [a3b3=(ab)(a2+b2+ab)]

=>13cos2x. limh0 sin(x+hx)h[(sin(x+h)cos x)23+(sinx cos(x+h))23+3sin(x+h)cosx. cox(x+h)sinx]             [sin(ab)=sina.cosbcosa.sinb]

=>13cos2x. limh0 sinhh. limh01[(sin(x+h)cos x)23+(sinx cos(x+h))23+3sin(x+h)cosx. cox(x+h)sinx]

=>1cos23x.1.1[(sin(x+0)cos x)23+(sinx cos(x+0))23+3sin(x+0)cosx. cox(x+0)sinx]

=>1cos23x.1.1[(sinxcos x)23+(sinx cosx)23+3sinx.cosx. cosx.sinx]

=>1cos23x.1.1[(sinxcos x)23+(sinx cosx)23+(sinxcosx)23]

=>1cos23x.13(sinxcos x)23

=>131cos43x.sin23x

=>131cos2x(cos43x.sin23xcos2x)

=>13sec2x(sin23xcos23x)

=>13.1tan23x.sec2x

http://mycbseguide.com/examin8/

Related Questions

Square of 169
  • 1 answers
(3+i)x + (1-2i) y +7i =0
  • 1 answers
Express the complex number i-39
  • 0 answers
2nC2:nC3=33:10
  • 0 answers
Ch 1 ke questions
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App