Derivative of cube root of tanx …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Vivek Kumar 8 years, 4 months ago
- 1 answers
Related Questions
Posted by Ashish Chaudhary 10 months, 3 weeks ago
- 1 answers
Posted by Gurleen Kaur 11 months ago
- 0 answers
Posted by Sana Dharwad 10 months, 3 weeks ago
- 0 answers
Posted by Manoj Thakur 11 months ago
- 0 answers
Posted by Sabin Sultana 10 months, 3 weeks ago
- 0 answers
Posted by Sethpoulou Apoulou 11 months, 1 week ago
- 0 answers
Posted by Nitin Kumar 10 months, 1 week ago
- 1 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Naveen Sharma 8 years, 4 months ago
Ans.
Derivative of 3√tanx by First Principle is given by:
=>f′(x)=limh→0 3√tan(x+h)−3√tanxh
=>limh→0 3√sin(x+h)cos(x+h)−3√sinxcosxh
=>limh→0 3√sin(x+h)cos x−3√sinx cos(x+h)h3√cos(x+h)cosx
=>limh→013√cos(x+h)cosx. limh→0 3√sin(x+h)cos x−3√sinx cos(x+h)h
=>13√cos(x+0)cosx. limh→0 3√sin(x+h)cos x−3√sinx cos(x+h)h
=>13√cos2x. limh→0 3√sin(x+h)cos x−3√sinx cos(x+h)h×[(sin(x+h)cos x)23+(sinx cos(x+h))23+3√sin(x+h)cosx. cox(x+h)sinx][(sin(x+h)cos x)23+(sinx cos(x+h))23+3√sin(x+h)cosx. cox(x+h)sinx]
=>13√cos2x. limh→0 sin(x+h)cos x−sinx cos(x+h)h[(sin(x+h)cos x)23+(sinx cos(x+h))23+3√sin(x+h)cosx. cox(x+h)sinx] [a3−b3=(a−b)(a2+b2+ab)]
=>13√cos2x. limh→0 sin(x+h−x)h[(sin(x+h)cos x)23+(sinx cos(x+h))23+3√sin(x+h)cosx. cox(x+h)sinx] [sin(a−b)=sina.cosb−cosa.sinb]
=>13√cos2x. limh→0 sinhh. limh→01[(sin(x+h)cos x)23+(sinx cos(x+h))23+3√sin(x+h)cosx. cox(x+h)sinx]
=>1cos23x.1.1[(sin(x+0)cos x)23+(sinx cos(x+0))23+3√sin(x+0)cosx. cox(x+0)sinx]
=>1cos23x.1.1[(sinxcos x)23+(sinx cosx)23+3√sinx.cosx. cosx.sinx]
=>1cos23x.1.1[(sinxcos x)23+(sinx cosx)23+(sinxcosx)23]
=>1cos23x.13(sinxcos x)23
=>131cos43x.sin23x
=>131cos2x(cos43x.sin23xcos2x)
=>13sec2x(sin23xcos23x)
=>13.1tan23x.sec2x
0Thank You