No products in the cart.

Derivative of cube root of tanx …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Derivative of cube root of tanx by first principle

  • 1 answers

Naveen Sharma 8 years, 9 months ago

Ans. 

\(Derivative \space of \space \sqrt [3] {tan x} \space by \space First \space Principle \space is \space given \space by : \)

\(=> f'(x) = lim_{h \to 0} \space {{ \sqrt [3]{tan(x+h)} - \sqrt [3] {tan x}} \over h}\)

\(=> lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h)\over cos(x+h)} - \sqrt [3] {sinx\over cosx }} \over h}\)

\(=> lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h) cos \space x} - \sqrt [3] {sinx \space cos(x+h) }} \over h {\sqrt [3]{cos(x+h) cosx} }}\)

\(=> lim_{h \to 0} {1\over {\sqrt [3]{cos(x+h) cosx} }} . \space lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h) cos \space x} - \sqrt [3] {sinx \space cos(x+h) }} \over h}\)

\(=> {1\over {\sqrt [3]{cos(x+0) cosx} }} . \space lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h) cos \space x} - \sqrt [3] {sinx \space cos(x+h) }} \over h}\)

\(=> {1\over {\sqrt [3]{cos^2x } }}.\space lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h) cos \space x} - \sqrt [3] {sinx\space cos(x+h)}}\over h} \times{ {[{(sin(x+h) cos \space x})^{2\over 3}}+{({sinx \space cos(x+h)})^{2\over3}}+\sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}]\over {[{(sin(x+h) cos \space x})^{2\over 3}}+{({sinx \space cos(x+h)})^{2\over3}}+ \sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}]}\)   

\(\)\(=> {1\over {\sqrt [3]{cos^2x } }}.\space lim_{h \to 0}{ \space {{sin(x+h) cos \space x - sinx\space cos(x+h)}} \over {h [{(sin(x+h) cos \space x})^{2\over 3}+({sinx \space cos(x+h)})^{2\over3}+ \sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}}]}\)                       \([a^3-b^3 = (a-b)(a^2+b^2+ab)]\)

\(=> {1\over {\sqrt [3]{cos^2x } }}.\space lim_{h \to 0}{ \space {{sin(x+h -x )}} \over {h [{(sin(x+h) cos \space x})^{2\over 3}+({sinx \space cos(x+h)})^{2\over3}+ \sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}}]}\)             \([sin (a-b) = sina.cosb - cos a. sin b ]\)

\(=> {1\over {\sqrt [3]{cos^2x } }}.\space lim_{h \to 0}{ \space {{sinh }} \over h} . \space lim_{h \to 0}{ { 1\over [{(sin(x+h) cos \space x})^{2\over 3}+({sinx \space cos(x+h)})^{2\over3}+ \sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}]}}\)

\(=> {1\over cos^{2\over3}x} . 1. {1\over[(sin(x+0) cos \space x)^{2\over 3}+(sinx \space cos(x+0))^{2\over3}+ \sqrt [3]{sin(x+0)cosx. \space cox(x+0)sinx}]}\)

\(=> {1\over cos^{2\over3}x} . 1. {1\over[(sinx cos \space x)^{2\over 3}+(sinx \space cosx)^{2\over3}+ \sqrt [3]{sinx.cosx. \space cosx .sinx}]}\)

\(=> {1\over cos^{2\over3}x} . 1. {1\over[(sinx cos \space x)^{2\over 3}+(sinx \space cosx)^{2\over3}+ ({sinxcosx})^{2\over3}]}\)

\(=> {1\over cos^{2\over3}x} . {1\over3(sinx cos \space x)^{2\over 3}}\)

\(=> {1\over 3}{1\over cos^{4\over3}x. sin^{2\over 3}x}\)

\(=> {1\over 3}{{1\over cos^2x}\over ({ cos^{4\over3}x. sin^{2\over 3}x\over cos^2x})}\)

\(=> {1\over 3}{{sec^2x}\over ({ sin^{2\over 3}x\over cos^{2\over 3}x})}\)

\(=> {1\over 3}.{1\over { tan^{2\over 3}x}}.{sec^2x}\)

https://examin8.com Test

Related Questions

(3+i)x + (1-2i) y +7i =0
  • 1 answers
2nC2:nC3=33:10
  • 0 answers
Ch 1 ke questions
  • 1 answers
Express the complex number i-39
  • 0 answers
Square of 169
  • 1 answers
Find the product. (4x²) (–5³)
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App