If 6x=secA and 6/x=tanA then find …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Gautam Sharma 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
We have,
6x = sec {tex}\theta{/tex}........(i)
and {tex}\frac { 6 } { x } = \tan \theta{/tex} ........(ii)
Adding (i) and (ii), we get
{tex}6 \left( x + \frac { 1 } { x } \right) = ( \sec \theta + \tan \theta ){/tex}.......(iii)
Subtracting (ii) from (i), we get
{tex}6 \left( x - \frac { 1 } { x } \right) = ( \sec \theta - \tan \theta ){/tex}........(iv)
Multiplying the corresponding sides of (iii) and (iv), we get
{tex}36 \left( x ^ { 2 } - \frac { 1 } { x ^ { 2 } } \right) = \left( \sec ^ { 2 } \theta - \tan ^ { 2 } \theta \right) = 1{/tex}
{tex}\Rightarrow 9 \left( x ^ { 2 } - \frac { 1 } { x ^ { 2 } } \right) = \frac { 1 } { 4 }{/tex}
0Thank You