No products in the cart.

If a2,b2,c2 are in A.P to prove …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If a2,b2,c2 are in A.P to prove that                  1/b+c,1/c+a,1/a+b are in A.P

  • 2 answers

Rashmi Bajpayee 8 years, 2 months ago

If a2, b2, c2 are in AP, then

2b2 = a2 + c2 

b2 + b2 = a2 + c2 

b2 - a2 = c2 - b2 

(b - a)(b + a) = (c - b)(c + b)

(b - a)/(c + b) = (c - b)/(b + a)

Dividing both sides by (c + a),

(b - a)/{(c + b)(c + a)} = (c - b)/{(b + a)(c + a)}

{(b + c) - (c + a)}/{(b + c)(c + a) = {(c + a) - (a + b)}/{(a + b)(c + a)}

{1/(c + a)} - {1/(b + c)} = {1/(a + b)} - {1/(c + a)}

{2/(c + a)} = {1/(a + b)} - {1/(b + c)}

Therefore 1/(a + b), 1/(b + c), 1/(c + a) are in AP.

Naveen Sharma 8 years, 2 months ago

Ans. Given : a2 b2 c2 are in A.P.

To Prove 1b+c,1c+a,1a+b Are in A.P.

Proof : 2b2 = a2 + c2   [as a2 b2 c2 are in A.P.]

=> b2 + b2 = a2 + c2

=> b2 - a2 = c2 - b2 

=> (b-a) (b+a) = (c-b) (c+b)

=> (ba)(c+b)=(cb)(b+a)

Divide both side by 1(c+a), We get 

=> (ba)(c+b)×(c+a)=(cb)(b+a)×(c+a)

=> (ba+cc)(c+b)×(c+a)=(cb+aa)(b+a)×(c+a)

=> (b+c)(c+a)(c+b)×(c+a)=(c+a)(a+b))(b+a)×(c+a)

=> 1(c+a)1(c+b)=1(a+b)1(c+a)

=> 2(c+a)=1(a+b)+1(c+b)

Hence by this equation we, can say that 1b+c,1c+a,1a+bare in A.P.

http://mycbseguide.com/examin8/

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App