Prove that the perimeter of a …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months ago
- 0 answers
Posted by Kanika . 4 weeks, 1 day ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let a and b be the sides of right-angled triangle and c be the hypotenuse.

From {tex} \Delta{/tex}ABC, we have
c2 = a2 + b2
Area of {tex}\Delta{/tex}ABC, (A) ={tex} \frac { 1 } { 2 } a \cdot b = \frac { 1 } { 2 } a \sqrt { c ^ { 2 } - a ^ { 2 } }{/tex}
On differentiating both sides w.r.t. a, we get
{tex} \frac { d A } { d a } = \frac { 1 } { 2 } \cdot 1 \cdot \sqrt { c ^ { 2 } - a ^ { 2 } } + \frac { 1 } { 2 } \cdot a \cdot \frac { 1 } { 2 } \cdot \frac { ( - 2 a ) } { \sqrt { c ^ { 2 } - a ^ { 2 } } }{/tex}
{tex} = \frac { 1 } { 2 } \left( \sqrt { c ^ { 2 } - a ^ { 2 } } - \frac { a ^ { 2 } } { \sqrt { c ^ { 2 } - a ^ { 2 } } } \right){/tex}
For maxima or minima, put {tex} \frac { d A } { d a } = 0{/tex}
{tex}\Rightarrow \frac { 1 } { 2 } \left( \sqrt { c ^ { 2 } - a ^ { 2 } } - \frac { a ^ { 2 } } { \sqrt { c ^ { 2 } - a ^ { 2 } } } \right) = 0{/tex}
{tex} \Rightarrow{/tex} c2 - a2 - a2 = 0
{tex} \Rightarrow{/tex} c2 = 2a2
Now, {tex}\frac { d ^ { 2 } A } { d a ^ { 2 } } = \frac { 1 } { 2 } \left[ \frac { - a } { \sqrt { c ^ { 2 } - a ^ { 2 } } } - \frac { a ^ { 3 } } { \left( c ^ { 2 } - a ^ { 2 } \right) ^ { 3 / 2 } } \right]{/tex}
{tex}= - \frac { 1 } { 2 } a \left\lfloor \frac { c ^ { 2 } - a ^ { 2 } + a ^ { 2 } } { \left( c ^ { 2 } - a ^ { 2 } \right) ^ { 3 / 2 } } \right]{/tex}
{tex}= - \frac { 1 } { 2 } \frac { c ^ { 2 } a } { \left( c ^ { 2 } - a ^ { 2 } \right) ^ { 3 / 2 } } < 0{/tex}
Therefore, Area of triangle ABC is maximum and
b = {tex} \sqrt { c ^ { 2 } - a^{ 2 } } = \sqrt { 2 a^ { 2 } - a ^ { 2 } }{/tex} = a
Hence, the triangle is isosceles.
0Thank You