If the angle of elevation of …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
If the angle of elevation of a cloud from a point h metres above a sea level is a and the angle of depression of its reflection in the lake be b , prove that the distance of the cloud from the point of observation is 2h sec alpha / tan bita - tab alpha
Posted by Shubham Maity 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 4 weeks, 1 day ago
- 1 answers
Posted by Hari Anand 6 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
A is the cloud.

D is a point h metres above the lake {tex}\angle{/tex}ADB = {tex}\alpha {/tex}
A' is the reflection of A in the lake {tex}\angle{/tex}ADB = {tex}\beta {/tex}
EC is the water level
In right triangle ABD,
tan {tex}\alpha {/tex} = {tex}\frac{{AB}}{{DB}}{/tex} ..........(1)
In right triangle ABD, tan {tex}\alpha {/tex} = {tex}\frac{{AB}}{{DB}}{/tex}.......(1)
tan {tex}\beta {/tex} = {tex}\frac{{A'B}}{{DB}} = \frac{{A'C + CB}}{{DB}}{/tex}
= {tex}\frac{{AC + CB}}{{DB}}{/tex}
{tex}\because {/tex} AC = A'C (by the law of reflection)
= {tex}\frac{{AB + BC + CB}}{{DB}} = \frac{{AB + h + h}}{{DB}} = \frac{{AB + 2h}}{{DB}}{/tex} (2)
Dividing (1) by (2), we get {tex}\frac{{\tan \alpha }}{{\tan \beta }} = \frac{{AB}}{{AB + 2h}}{/tex}
{tex}\Rightarrow {/tex} {tex}\frac{{\tan \alpha }}{{\tan \beta }} = \frac{{AB + 2h}}{{AB}}{/tex} ......By inverted
{tex}\Rightarrow {/tex} {tex}\frac{{\tan \beta }}{{\tan \alpha }} = 1 + \frac{{2h}}{{AB}}{/tex}
{tex}\Rightarrow {/tex} {tex}\frac{{2h}}{{AB}} = \frac{{2h\tan \alpha }}{{\tan \beta - \tan \alpha }}{/tex} ........(3)
In right triangle ABD,cosec {tex}\alpha {/tex} = {tex}\frac{{AD}}{{AB}}{/tex}
{tex}\Rightarrow {/tex} AD = AB cosec {tex}\alpha {/tex}
{tex}\Rightarrow {/tex} AD = {tex}\frac{{2h\tan \alpha \cos ec\alpha }}{{\tan \beta - \tan \alpha }}{/tex}.........From (2)
{tex}\Rightarrow {/tex} AD = {tex}\frac{{2h\frac{{\sin \alpha }}{{\cos \alpha }}.\frac{1}{{\sin \alpha }}}}{{\tan \beta - \tan \alpha }}{/tex}
{tex}\Rightarrow {/tex} AD = {tex}\frac{{2h\sec \alpha }}{{\tan \beta - \tan \alpha }}{/tex}
Hence, the distance of the cloud from the point of observation is {tex}\frac{{2h\sec \alpha }}{{\tan \beta - \tan \alpha }}{/tex}
0Thank You