In figure xp/py=xq/qz=3if the area of …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Avinash Kumar 6 years, 5 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
Given {tex}\frac{{XP}}{{PY}} = \frac{{XQ}}{{QZ}}{/tex}
{tex}\Rightarrow {/tex} PQ {tex}\parallel{/tex} YZ .....(i) [By converse of B.P.T]
In {tex}\triangle {/tex} XPQ and {tex}\triangle {/tex} XYZ we have
[ {tex}\angle{/tex} XPQ = {tex}\angle{/tex} Y [From (i) corresponding angles]
{tex}\angle{/tex} X = {tex}\angle{/tex}X [common]
{tex}\therefore {/tex} {tex}\triangle {/tex} XPQ {tex}\cong{/tex} {tex}\triangle {/tex}XYZ [By AA similarity]
{tex}\therefore {/tex} {tex}\frac{{ar\left( {\triangle XYZ} \right)}}{{ar\left( {\triangle XPQ} \right)}}=\frac{{X{Y^2}}}{{X{P^2}}}{/tex}
{tex}\frac { P Y } { X P } = \frac { 1 } { 3 }{/tex}
We have {tex}\Rightarrow \frac { P Y } { X P } + 1 = \frac { 1 } { 3 } + 1{/tex}
{tex}\Rightarrow \frac { P Y + X P } { X P } = \frac { 4 } { 3 }{/tex}
{tex}\Rightarrow {/tex} {tex}\frac{{XY}}{{XP}} = \frac{4}{3}{/tex}
Substituting in (i), we get
{tex}\frac{{ar\left( {\triangle XYZ} \right)}}{{ar\left( {\triangle XPQ} \right)}} = {\left( {\frac{4}{3}} \right)^2} = \frac{{16}}{9}{/tex}
{tex}\Rightarrow {/tex}{tex}\frac{{32}}{{ar\left( {XPQ} \right)}} = \frac{{16}}{9}{/tex}
{tex}ar\left( {XPQ} \right) = \frac{{32 \times 9}}{{16}} = 18c{m^2}{/tex}
Area of quadrilateral PYZQ = 32 - 18 = 14 cm2
0Thank You