IF sec alpha =5/4 then evaluate …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Hozaifa Aijaz 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
We have,
{tex} \sec \alpha = \frac { \text { Hypotenuse } } { \text { Base } } = \frac { 5 } { 4 }{/tex}
So,Let us draw a right triangle ABC, {tex}\angle B=90^\circ{/tex} such that
hypotenuse = AC = 5 units, Base = AB = 4 units, and{tex}\angle B A C{/tex}= {tex}\alpha{/tex}.
Applying Pythagoras theorem in {tex}\Delta{/tex}ABC, we get
{tex}A C ^ { 2 } = A B ^ { 2 } + B C ^ { 2 }{/tex}
{tex}\Rightarrow \quad 5 ^ { 2 } = 4 ^ { 2 } + B C ^ { 2 }{/tex}
{tex}\Rightarrow \quad B C ^ { 2 } = 5 ^ { 2 } - 4 ^ { 2 } = 9{/tex}
{tex}\Rightarrow \quad B C = \sqrt { 9 } = 3{/tex}
{tex}\therefore \quad \tan \alpha = \frac { B C } { A B } = \frac { 3 } { 4 }{/tex}
Now, we have, {tex}\frac { 1 - \tan \alpha } { 1 + \tan \alpha } = \frac { 1 - \frac { 3 } { 4 } } { 1 + \frac { 3 } { 4 } } = \frac { \frac { 1 } { 4 } } { \frac { 7 } { 4 } } = \frac { 1 } { 7 }{/tex}
therefore, {tex}\frac{1-\tan\alpha}{1+\tan\alpha}=\frac17{/tex}
1Thank You