No products in the cart.

Points P, Q and Richard in …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Points P, Q and Richard in that order are dividing a line segment joining A (1,6) and B (5,-2) in four equal parts. Find the coordinates of P, Q and Richard.
  • 1 answers

Sia ? 6 years, 6 months ago

Points P, Q and R in order divide a line segment joining the points A(1, 6) and B(5, -2) in 4 equal parts.

P divides AB in the ratio of 1:3 Let coordinates of P be (x, y), then
{tex}x = \frac { m x _ { 2 } + n x _ { 1 } } { m + n } = \frac { 1 \times 5 + 3 \times 1 } { 1 + 3 }{/tex}
{tex}= \frac { 5 + 3 } { 4 } = \frac { 8 } { 4 } = 2{/tex}
{tex}y = \frac { m y _ { 2 } + n y _ { 1 } } { m + n } = \frac { 1 \times ( - 2 ) + 3 \times 6 } { 1 + 3 }{/tex}
{tex}= \frac { - 2 + 18 } { 4 } = \frac { 16 } { 4 } = 4{/tex}
{tex}\therefore{/tex} Coordinates of P are (2, 4)
Similarly,
Q divides AB in 2:2 or 1:1 and Q is midpoint of AB.
{tex}\therefore{/tex} Coordinates of Q will be {tex}\left( \frac { 1 + 5 } { 2 } , \frac { 6 - 2 } { 2 } \right){/tex}
or {tex}\left( \frac { 6 } { 2 } , \frac { 4 } { 2 } \right){/tex} or (3, 2)
and R divides AB in the ratio of 3:1
Coordinates of R will be 
{tex}\left( \frac { 3 \times 5 + 1 \times 1 } { 3 + 1 } , \frac { 3 \times ( - 2 ) + 1 \times 6 } { 3 + 1 } \right){/tex}
or {tex}\left( \frac { 15 + 1 } { 4 } , \frac { - 6 + 6 } { 4 } \right) \text { or } \left( \frac { 16 } { 4 } , \frac { 0 } { 4 } \right) \text { or } ( 4,0 ){/tex}

https://examin8.com Test

Related Questions

X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App