If a=7—4√3, find √a+1/√a

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Sid Banerjee 8 years, 3 months ago
- 2 answers
Arun Soni 8 years, 3 months ago
{tex}\eqalign{ & Here,a = 7 - 4\sqrt 3 \left( {Given} \right) \cr & Let{\text{ }}x = \sqrt a + \frac{1}{{\sqrt a }} \cr & \Rightarrow {x^2} = {\left( {\sqrt a + \frac{1}{{\sqrt a }}} \right)^2} \cr & \Rightarrow {x^2} = {\left( {\sqrt a } \right)^2} + {\left( {\frac{1}{{\sqrt a }}} \right)^2} + 2 \times \sqrt a \times \frac{1}{{\sqrt a }} \cr & \Rightarrow {x^2} = a + \frac{1}{a} + 2 \cr & \Rightarrow {x^2} = 7 - 4\sqrt 3 + \frac{1}{{7 - 4\sqrt 3 }} + 2 \cr & \Rightarrow {x^2} = 7 - 4\sqrt 3 + 7 + 4\sqrt 3 + 2\left[ {\because \frac{1}{{7 - 4\sqrt 3 }} \times \frac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }} = 7 + 4\sqrt 3 } \right] \cr & \Rightarrow {x^2} = 16 \cr & \Rightarrow x = \pm 4 \cr & \Rightarrow \sqrt a + \frac{1}{{\sqrt a }} = \pm 4 \cr} {/tex}
Related Questions
Posted by Akhilesh Patidar 1 year, 4 months ago
- 0 answers
Posted by Alvin Thomas 3 months ago
- 0 answers
Posted by Yash Pandey 6 months, 1 week ago
- 0 answers
Posted by Savitha Savitha 1 year, 4 months ago
- 0 answers
Posted by Sheikh Alfaz 1 month, 2 weeks ago
- 0 answers
Posted by Duruvan Sivan 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Geetanjali Akshu 3 years, 5 months ago
0Thank You