No products in the cart.

X²+6x-(a²+2a-8)=0

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

X²+6x-(a²+2a-8)=0
  • 1 answers

Sia ? 6 years, 6 months ago

The given equation is {tex}x^2 + 6x - (a^2 + 2a - 8) = 0{/tex}
Comparing it with {tex}Ax^2 + Bx +C = 0,{/tex} we get
{tex}A = 1,\  B = 6\ and\ C = -(a^2 + 2a - 8){/tex}
{tex}\therefore{/tex} {tex}D =B^2 - 4AC ={/tex} (6)2 - 4(1)(-(a2 + 2a - 8))

= 36 +4a2 + 8a - 32

= 4a2 + 8a + 4 = 4(a2 + 2a + 1) = 4(a + 1)2 > 0
So, the given equation has real roots, given by
{tex}\alpha = \frac { - B + \sqrt { D } } { 2 A } = \frac { - 6 + \sqrt { 4 ( a + 1 ) ^ { 2 } } } { 2 \times 1 } = \frac { - 6 + 2 ( a + 1 ) } { 2 }{/tex} {tex}= -3 + (a + 1) = a - 2{/tex}
{tex}\beta = \frac { - B - \sqrt { D } } { 2 A } = \frac { - 6 - \sqrt { 4 ( a + 1 ) ^ { 2 } } } { 2 \times 1 } = \frac { - 6 - 2 ( a + 1 ) } { 2 }{/tex} {tex}= -3 - (a + 1) = -a - 4 = -(a + 4){/tex}
Hence, (a - 2) and -(a + 4) are the roots of the given equation.

https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App