From the top of a 7m …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
In right triangle ABD,

{tex}\tan {45^0} = \frac{{AB}}{{BD}}{/tex}
{tex} \Rightarrow {/tex} {tex}1 = \frac { 7 } { B D }{/tex}
{tex} \Rightarrow {/tex} BD = 7 m
{tex} \Rightarrow {/tex} AE = 7 m
In right triangle AEC,
{tex}\tan 60 ^ { \circ } = \frac { C E } { A E }{/tex}
{tex}\Rightarrow \sqrt { 3 } = \frac { \mathrm { CE } } { 7 } \Rightarrow \mathrm { CE } = 7 \sqrt { 3 } \mathrm { m }{/tex}
{tex}\therefore{/tex} CD = CE + ED
= CE + AB
{tex}= 7 \sqrt { 3 } + 7 = 7 ( \sqrt { 3 } + 1 ) { \mathrm { m } }{/tex}
Hence height of the tower is {tex}7 ( \sqrt { 3 } + 1 ){/tex} m.
0Thank You