If each sides of a triangle …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Akhilesh Patidar 1 year, 4 months ago
- 0 answers
Posted by Sheikh Alfaz 1 month, 2 weeks ago
- 0 answers
Posted by Yash Pandey 6 months ago
- 0 answers
Posted by Alvin Thomas 3 months ago
- 0 answers
Posted by Savitha Savitha 1 year, 4 months ago
- 0 answers
Posted by Duruvan Sivan 6 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sahdev Sharma 8 years, 3 months ago
Let a,b,c be the sides of the triangle. Perimeter 2s = a + b + c
Semi-perimeter, s ={tex} a+b+c\over 2{/tex}
Using Heron's formula: Area of the triangle A = {tex}\sqrt {s(s−a)(s−b)(s−c) }{/tex}
Now, if the sides are doubled: 2a, 2b, 2c Let s' be the semi-perimeter.
2s' = 2a + 2b + 2c
s' = a + b + c or s' = 2s
Area of the triangle,
A' = {tex}\sqrt {s′(s′−2a)(s′−2b)(s′−2c) }{/tex}
A' = {tex} \sqrt {(2s)(2s−2a)(2s−2b)(2s−2c)}{/tex}
A'= {tex}\sqrt {16s(s−a)(s−b)(s−c) }{/tex}
A' ={tex} 4\sqrt {s(s−a)(s−b)(s−c) }{/tex}
A' = 4A
A':A = 4:1
Ratio of area of the new triangle and old triangle is 4:1
0Thank You