No products in the cart.

If each sides of a triangle …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If each sides of a triangle is double then find the ratio of area of the new triangle thus formed and given triangle
  • 1 answers

Sahdev Sharma 8 years, 3 months ago

Let a,b,c be the sides of the triangle. Perimeter 2s = a + b + c

Semi-perimeter, s ={tex} a+b+c\over 2{/tex}

Using Heron's formula: Area of the triangle A = {tex}\sqrt {s(s−a)(s−b)(s−c) }{/tex}

Now, if the sides are doubled: 2a, 2b, 2c Let s' be the semi-perimeter.

2s' = 2a + 2b + 2c

s' = a + b + c or s' = 2s

Area of the triangle,

A' = {tex}\sqrt {s′(s′−2a)(s′−2b)(s′−2c) }{/tex}

A' = {tex} \sqrt {(2s)(2s−2a)(2s−2b)(2s−2c)}{/tex}

A'= {tex}\sqrt {16s(s−a)(s−b)(s−c) }{/tex}

A' ={tex} 4\sqrt {s(s−a)(s−b)(s−c) }{/tex}

A' = 4A

A':A = 4:1

Ratio of area of the new triangle and old triangle is 4:1

https://examin8.com Test

Related Questions

3√2×4√2×12√32
  • 0 answers
X³-12x²+39x-28
  • 0 answers
2x²+[1×(8x²)^-1]+1
  • 0 answers
What is 38747484±393884747
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App