In triangle ABC, AD is perpendicular …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 3 weeks, 6 days ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers
Posted by Hari Anand 6 months ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
AD2 = BD {tex}\times{/tex} CD
or, {tex}\frac { A D } { C D } = \frac { B D } { A D }{/tex}
Therefore, {tex}\triangle A D C \sim \triangle B D A{/tex} (by SAS)
or, {tex}\angle{/tex}BAD = {tex}\angle{/tex}ACD;
{tex}\angle{/tex}DAC = {tex}\angle{/tex}DBA (Corresponding angles of similar triangles)
{tex}\angle{/tex}BAD + {tex}\angle{/tex}ACD + {tex}\angle{/tex}DAC + {tex}\angle{/tex}DBA = 180o [sum of angles of ∆]
or, 2{tex}\angle{/tex}BAD + 2{tex}\angle{/tex}DAC = 180o
or, {tex}\angle{/tex}BAD + {tex}\angle{/tex}DAC = 90o
Therefore, {tex}\angle{/tex}A = 90o
0Thank You