ABC is aright triangled at B …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
In {tex}\triangle{/tex}ABC, {tex}\angle{/tex}B = 90o
AC2 = AB2 + BC2
AC2 = 282 + 212
AC2 = 784 + 441
AC2 = 1225
AC = 35 cm
Area of shaded region = Area of triangle + Area of semi-circle with diameter AC - area of quadrant with radius BC
{tex}\;=\;\frac12\times(21\times28)+\frac12\times\frac{22}7\times\frac{35}2\times\frac{35}2-\frac14\times\frac{22}7\times21\times21{/tex}
{tex}\;=\;(7\times28)+\;11\times\frac52\times\frac{35}2-\frac12\times\frac{11}1\times3\times21{/tex}
{tex}= 294 + 481.25 - 346.5{/tex}
{tex}= 775.25 - 346.5{/tex}
{tex}= 428.75 \;cm^2.{/tex}
0Thank You