No products in the cart.

If cos alpha/COS beta=m and cos …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If cos alpha/COS beta=m and cos alpha /sin beta=n then show that ( m square +n square) cos square beta =n square
  • 1 answers

Sia ? 6 years, 5 months ago

Given, m = {tex}\frac { \cos \alpha } { \cos \beta }{/tex} ......(1) and,  n = {tex}\frac { \cos \alpha } { \sin \beta }{/tex}.......(2)

 LHS = (m2 +n2) cos2{tex}\beta{/tex}
{tex}\Rightarrow \mathrm { LHS } = \left( \frac { \cos ^ { 2 } \alpha } { \cos ^ { 2 } \beta } + \frac { \cos ^ { 2 } \alpha } { \sin ^ { 2 } \beta } \right) \cos ^ { 2 } \beta{/tex} [ from (1) & (2) ]
{tex}\Rightarrow \mathrm { LHS } = \left( \frac { \cos ^ { 2 } \alpha \sin ^ { 2 } \beta + \cos ^ { 2 } \alpha \cos ^ { 2 } \beta } { \cos ^ { 2 } \beta \sin ^ { 2 } \beta } \right) \cos ^ { 2 } \beta{/tex}
{tex}\Rightarrow \mathrm { LHS } = \cos ^ { 2 } \alpha \left( \frac { \sin ^ { 2 } \beta + \cos ^ { 2 } \beta } { \cos ^ { 2 } \beta \sin ^ { 2 } \beta } \right) \cos ^ { 2 } \beta{/tex}
{tex}\Rightarrow \mathrm { LHS } = \cos ^ { 2 } \alpha \left( \frac { 1 } { \cos ^ { 2 } \beta \sin ^ { 2 } \beta } \right) \cos ^ { 2 } \beta{/tex}  [ Since, sin2A + cos2A =1]

{tex}\Rightarrow L.H.S. = \frac { \cos ^ { 2 } \alpha } { \sin ^ { 2 } \beta } = \left( \frac { \cos \alpha } { \sin \beta } \right) ^ { 2 }{/tex}

{tex}\therefore L.H.S. = n^2{/tex} [ from (2) ]

 = R.H.S .  Hence, Proved.

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App