No products in the cart.

The verticles of a ∆ABC are …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The verticles of a ∆ABC are A(4,6), B(1,5) and C(7,2). A line is drawn to intersect sides AB and AC at D and E respectively,such that AD/AB = AE/AC= 1/4.calculate tell area of the ∆ADE and compare it with the area of ∆ABC.
  • 1 answers

Sia ? 6 years, 5 months ago

 
Since,
{tex}\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} = \frac{1}{4}{/tex}
{tex}\therefore DE||BC{/tex} [By Thales theorem]
{tex}\therefore \triangle ADE \sim \triangle ABC{/tex}
{tex}\therefore \frac{{Area(\Delta ADE)}}{{Area(\Delta ABC)}} = \frac{{A{D^2}}}{{A{B^2}}}{/tex}
{tex} = {\left( {\frac{{AD}}{{AB}}} \right)^2} = {\left( {\frac{1}{4}} \right)^2} = \frac{1}{{16}}{/tex} .......... (i)
Now, Area ({tex}\triangle{/tex}ABC) = {tex}\frac{1}{2}\left[ {4(5 - 2) + 1(2 - 6) + 7(6 - 5)} \right]{/tex}
{tex} = \frac{1}{2}\left[ {12 - 4 + 7} \right] = \frac{{15}}{2}{/tex} sq. units .......... (ii)
From eq. (i) and (ii),
Area ({tex}\triangle{/tex}ADE) = {tex}\frac{1}{{16}} \times {/tex}Area ({tex}\triangle{/tex}ABC) = {tex}\frac{1}{{16}} \times \frac{{15}}{2} = \frac{{15}}{{32}}{/tex} sq. units
Area ({tex}\triangle{/tex}ADE) : Area ({tex}\triangle{/tex}ABC) = 1 : 16

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App