No products in the cart.

From a solid circular cylinder with …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

From a solid circular cylinder with height 10cm and radius of the base 6cm, a right circular pole of the same height and same base is remove. Find the volume of the remaining surface also find whole surface area
  • 1 answers

Sia ? 6 years, 5 months ago

Let V be the volume of the remaining solid and S be the whole surface area.
Then,

V = Volume of the cylinder - Volume of the cone.
{tex} \Rightarrow V = \left\{ \pi \times 6 ^ { 2 } \times 10 - \frac { 1 } { 3 } \times \pi \times 6 ^ { 2 } \times 10 \right\} \mathrm { cm } ^ { 3 } = ( 360 \pi - 120 \pi ) \mathrm { cm } ^ { 3 } = 240 \pi \mathrm { cm } ^ { 3 }{/tex}
Slant height of the cone = OC = {tex}\sqrt { O O ^ { \prime 2 } + O ^ { \prime } C ^ { 2 } } = \sqrt { 10 ^ { 2 } + 6 ^ { 2 } } = \sqrt { 136 } \mathrm { cm } = 2 \sqrt { 34 } \mathrm { cm }{/tex}
and, S = Curved surface area of the cylinder + Area of the base of the cylinder + Curved surface area of cone
{tex}S = \left\{ 2 \pi \times 6 \times 10 + \pi \times 6 ^ { 2 } + \pi \times 6 \times 2 \sqrt { 34 } \right\} \mathrm { cm } ^ { 2 } = ( 156 + 12 \sqrt { 34 } ) \pi \mathrm { cm } ^ { 2 }{/tex}

https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App