No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Shalini Sharma 6 years, 4 months ago

using propert of log log x = x/y log e since log e = 1 so, log x = x/y y log x = x diff. w. r. t. x dy/dx .log x + 1/x .y = l dy/dx = x-y/x log x
  • 0 answers
  • 0 answers
  • 2 answers

Äðřîjã Păĺ 6 years, 4 months ago

As a fraction ,it is equal to 106/125

Äðřîjã Păĺ 6 years, 4 months ago

It is equal to 0.048 radians i.e. 48.59 degrees
  • 1 answers

Dolly ?️ 6 years, 4 months ago

Apply the formula : Tan^-1(x) +tan^-1(y) =tan^-1((x+y)/(1-xy))
  • 2 answers

Sagar Sharma 6 years, 4 months ago

I think that the answer should be π only because sin~1 x + cos~1 x =π/2

Dolly ?️ 6 years, 4 months ago

Cos((2(pi/2 - cos^-1(3/4)) + cos^-1(3/4)) Cos(pi-2cos^-1(3/4)+ cos^-1(3/4)) Cos(pi-cos^-1(3/4)) Cos(cos^-1(-3/4) -3/4
  • 1 answers

Sia ? 6 years, 4 months ago

If sin(x)=3/4
then
x=sin-1(3/4)
x=0.848 radians=48.59

  • 0 answers
  • 0 answers
  • 0 answers
  • 2 answers

Priya Shyam 6 years, 4 months ago

First take out the value of A^2 i.e A×A by using matrix multiplication then multiply A which is given in question with 5 then subtract A^2-5A ,and at last is I it is a identity matrix and its value is all the diagonal element is 1 and upper&lower triangular elements are 0 then 6 × I and at last add the value of 6I with the value u have got from A^2-5A

Aman Kumar 6 years, 4 months ago

Its easy man.....ohk...listen brother...first of all u take out the matrix separately....first take out A^2, then multiply 5 with A matrix , u will get 5A then take [ I is I(3×3) order]...then multiply by 6 to it.......then apply normal addition subtraction.....u will definitely get the result
  • 7 answers

Parteek Gurjar 6 years, 4 months ago

-2sin2x

Vivek Kumar 6 years, 4 months ago

-2sin2x

Priya Shyam 6 years, 4 months ago

-2Sin2x

Shaina Rajput 6 years, 4 months ago

-2sin2x

Mugha ? 6 years, 4 months ago

cos2x=cos^2x-sin^2x=1-2sin^2x=2cos^2x-1

Anupam Dev 6 years, 4 months ago

Sin2x

Yathartha Solanki. 6 years, 4 months ago

Pls differntiate it
  • 1 answers

Sia ? 6 years, 4 months ago

According to the question we  are required to find matrix A such that {tex} \left[ \begin{array} { c c } { 2 } & { - 1 } \\ { 1 } & { 0 } \\ { - 3 } & { 4 } \end{array} \right] A = \left[ \begin{array} { c c } { - 1 } & { - 8 } \\ { 1 } & { - 2 } \\ { 9 } & { 22 } \end{array} \right]{/tex} .

Let us take the   order of  matrix A as m{tex}\times{/tex}{tex}{/tex},therefore, m = 2, n = 2.
Let {tex}A = \left[ \begin{array} { l l } { x } & { y } \\ { s } & { t } \end{array} \right]{/tex} ...(i)
{tex}\therefore \left[ \begin{array} { c c } { 2 } & { - 1 } \\ { 1 } & { 0 } \\ { - 3 } & { 4 } \end{array} \right] A = \left[ \begin{array} { c c } { - 1 } & { - 8 } \\ { 1 } & { - 2 } \\ { 9 } & { 22 } \end{array} \right]{/tex}
{tex}\Rightarrow \left[ \begin{array} { c c } { 2 } & { - 1 } \\ { 1 } & { 0 } \\ { - 3 } & { 4 } \end{array} \right] \left[ \begin{array} { l l } { x } & { y } \\ { s } & { t } \end{array} \right] = \left[ \begin{array} { c c } { - 1 } & { - 8 } \\ { 1 } & { - 2 } \\ { 9 } & { 22 } \end{array} \right]{/tex}
{tex}\Rightarrow \left[ \begin{array} { c c } { 2 x - s } & { 2 y - t } \\ { x } & { y } \\ { - 3 x + 4 s } & { - 3 y + 4 t } \end{array} \right] = \left[ \begin{array} { c c } { - 1 } & { - 8 } \\ { 1 } & { - 2 } \\ { 9 } & { 22 } \end{array} \right]{/tex}
Therefore,on equating corresponding elements both sides, we get,
2 - s = -1, x = 1, y = -2 and 2y - t = -8
At x = 1, 2x - s = -1 {tex}\Rightarrow{/tex} 2{tex}\times{/tex}1 - s = -1
{tex}\Rightarrow{/tex} -s = -1 - 2 {tex}\Rightarrow{/tex} s = 3 and at y = -2, 2y - t = -8,
{tex}\Rightarrow{/tex} 2{tex}\times{/tex}(-2) - t = -8 {tex}\Rightarrow{/tex} -4 - t = -8 {tex}\Rightarrow{/tex} t = 4
Therefore,on putting x = 1, y = -2, s = 3 and t = 4 in Eq. (i),
we get, {tex}A = \left[ \begin{array} { c c } { 1 } & { - 2 } \\ { 3 } & { 4 } \end{array} \right]{/tex}

  • 1 answers

Shaina Rajput 6 years, 4 months ago

Y=cos^-1(1-2x^2) Let x=sinΦ Y=cos^-1(1-2sin^2Φ) Y=cos^-1cos2Φ Y=2Φ Y=2sin^-1x Dy/dx =2/√1-x^2
  • 4 answers

Deepak Jindal 6 years, 4 months ago

Do hardwork

Isha Narang 6 years, 4 months ago

Study in the morning from 3:00 to 6:00 only

Richa Mishra 6 years, 4 months ago

????

Dolly ?️ 6 years, 4 months ago

Bas believe on yourself.
  • 1 answers

Anubhav Teotia 6 years, 4 months ago

differentiation ,appliacation of deriviative, integral , application of integral and linear programmimg and matrix and determinants
  • 6 answers

Anupam Dev 6 years, 4 months ago

Yes ncert is enough but read the otherwise books

Isha Narang 6 years, 4 months ago

yes ncert enough h

Deepak Jindal 6 years, 4 months ago

NCERT enough h......✌✌✌✌????

Emblem Newtonian 6 years, 4 months ago

RS aggrawal

Emblem Newtonian 6 years, 4 months ago

For Physics Pradeep's For chemistry nothing better than ncert

Aman Kumar 6 years, 4 months ago

Board purpose k liye...ncert padhne se 80% secure hai but...rest u have to do from somewhere...
  • 0 answers
  • 1 answers

Rohit Singh 6 years, 4 months ago

You can create h wall clock in which you can use maths formula instead of numbers.for instance you can write sin^2x +cos^x in place of one and d/dx(2x) in place of 2. Hope you get it.
  • 1 answers

Sia ? 6 years, 4 months ago

Modulus Function f : R {tex}\rightarrow{/tex} R, given by f(x) = |x| + 2
One-one: f(1) = |1| + 2 = 3 and f(2) = |2| + 2 = 4,so distinct elements have same image.So, f is not one-one.
Onto: f takes only positive values, so range(f) = set of positive real numbers {tex}\neq{/tex} R, codomain. So, f is not onto.

  • 1 answers

Sia ? 6 years, 4 months ago


{tex}s = \pi {r^2} + \pi rl{/tex} (given)
{tex}\Rightarrow{/tex}{tex}l = \frac{{s - \pi {r^2}}}{{\pi r}}{/tex} 
Let v be the volume
{tex}v = \frac{1}{3}\pi {r^2}h{/tex} 
{tex}\Rightarrow{/tex}{tex}{v^2} = \frac{1}{9}{\pi ^2}{r^4}{h^2}\,\,\left[ {{h^2} = {l^2} - {r^2}} \right]{/tex} 
{tex}\Rightarrow{/tex}{tex}{v^2} = \frac{1}{9}{\pi ^2}{r^4}\,\left( {{l^2} - {r^2}} \right){/tex} 
{tex}\Rightarrow{/tex}{tex}{v^2} = \frac{1}{9}{\pi ^2}{r^4}\left[ {\,{{\left( {\frac{{s - \pi {r^2}}}{{\pi r}}} \right)}^2} - {r^2}} \right]{/tex} 
{tex}= \frac{1}{9}{\pi ^2}{r^4}\left[ {\frac{{\left( {s - \pi {r^2}} \right)}^2}{{{\pi ^2}{r^2}}} - \frac{{{r^2}}}{1}} \right]{/tex} 
{tex}= \frac{1}{9}{r^2}\left[ {{{\left( {s - \pi {r^2}} \right)}^2} - {\pi ^2}{r^4}} \right]{/tex} 
{tex}= \frac{1}{9}{r^2}\left[ {{s^2} + {\pi ^2}{r^4} - 2s\pi {r^2} - {\pi ^2}{r^4}} \right]{/tex} 
{tex}= \frac{1}{9}{r^2}\left[ {{s^2} - 2s\pi {r^2}} \right]{/tex} 
{tex}z = \frac{1}{9}\left[ {{s^2}{r^2} - 2s\pi {r^4}} \right]{/tex} 
{tex}\left[ {\because {v^2} = z} \right]{/tex} 
Now {tex}\frac{{dz}}{{dr}} = \frac{1}{9}\,\left[ {2r{s^2} - 8s\pi {r^3}} \right]{/tex} 
{tex}0 = \frac{1}{9}\,\left[ {2r{s^2} - 8s\pi {r^3}} \right]{/tex} 
{tex}8s\pi {r^2} = 2r{s^2}{/tex} 
 {tex}\implies{/tex} {tex}4\pi {r^2} = s{/tex} 
Now  {tex}\frac{{{d^2}z}}{{d{x^2}}} = \frac{1}{9}\,\left[ {2{s^2} - 24s\pi {r^2}} \right]{/tex} 
{tex}{\left. {\frac{{{d^2}z}}{{d{x^2}}}} \right]_{{r^2} = \frac{s}{{4\pi }}}} = \frac{1}{9}\,\left[ {{{25}^2} - 24\pi .\frac{5}{{4\pi }}} \right]{/tex} 
= + ve
Hence minimum
Now {tex}s = 4\pi {r^2}{/tex} 
We have {tex}s = \pi rl + \pi {r^2}{/tex} 
{tex}4\pi {r^2} = \pi rl + \pi {r^2}{/tex} 
{tex}\Rightarrow{/tex} {tex}3\pi {r^2} = \pi rl{/tex} 
{tex}\Rightarrow{/tex}3 r = l
{tex}\Rightarrow{/tex}{tex}\frac{r}{l} = \frac{1}{3}{/tex} 
{tex}\Rightarrow{/tex}{tex}\sin \alpha = \frac{1}{3}{/tex} 
{tex}\therefore{/tex}{tex}\alpha = {\sin ^{ - 1}}\left( {\frac{1}{3}} \right){/tex}

  • 0 answers
  • 1 answers

Aman Thakur 6 years, 4 months ago

Continuity is the presence of a complete path for current flow. A closed switch that is operational, for example, has continuity. ... During a continuity test, a digital multimeter sends a small current through the circuit to measure resistance in the circuit.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App