No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sanjay Kumar 6 years ago

U can buy or download ncert exempler activity book issued by cbse
  • 1 answers

Sanjay Kumar 6 years ago

y= sin X + sin 2X dy\dx = cosX +2 cosx. 2
  • 1 answers

Sweta Kumari 5 years, 11 months ago

Ex 1.4 not the syllabus in 2019 - 20 board
  • 5 answers

Neeraj Yadav 5 years, 11 months ago

Log |-cosx| because tanx=sinx/cosx

Ron Vineetahuja 5 years, 11 months ago

Log( secx) . Not sec square x because its derivative exists integration does not exist

Deeya Singh 6 years ago

Sec square x is derivative of tanx

Deeya Singh 6 years ago

Log|secx|+C

Khushi Singh 6 years ago

Sec square x +c
  • 1 answers

Sia ? 6 years ago

y = |x + 3|
{tex} \Rightarrow y = \left( {x + 3} \right){/tex}, {tex}if\ x\geq-3{/tex} 
y = -(x + 3), if x < -3
{tex}\int_{ - 6}^0 {\left| {x + 3} \right|dx = ?} {/tex} 
Area {tex}= \int_{ - 6}^{ - 3} {-\left( {x + 3} \right)dx + \int_{ - 3}^0 {\left( {x + 3} \right)dx} } {/tex} 
{tex}= \left[ {-\frac{x^2}{2}-3x} \right]_{-6}^{-3}+ \left[ {\frac{x^2}{2}+3x} \right]_{-3}^{0}{/tex} 
{tex}= \left[ {(-\frac{9}{2}+9)-(-\frac{36}{2}+18)} \right]+ \left[ {(0+0)-(\frac{9}{2}-9)} \right]{/tex} 
{tex}= \left[ {(\frac{9}{2}+0)+(0+\frac{9}{2})} \right]{/tex} 
= 9 sq units

  • 1 answers

Shreyansh Jain 6 years ago

Let cosx^y = u and cosy^x = v Taking log both sides y log (cos x) =log u and x log (cos y ) = log v Now , differentiating both sides .. Like this we will get du/dx & dv/dx u +v =k (as per our assumption ) Therefore , du/dx +dv/dx = 0 Now put the values of du/dx & dv/dx .. And you will get your ans
  • 1 answers

Sia ? 6 years ago

Each ring can be worn on any of four fingers and this can be done in 5 ways.
Hence, the required number of ways = (4)5.

  • 2 answers

Anshul Sharma 6 years ago

It is around same for every chapter but you have to focus on calculas which is very important

Ujjwal Moral 6 years ago

Calculas is alone 45 marks
  • 0 answers
  • 2 answers

Shikha Maurya 6 years ago

Sinx(1-sinx)/(1+sinx)(1-sinx) sinx-sinx^2/cosx^2 secxtanx-tanx^2 Secx-(secx^2-1) secx-(tanx-x) secx-tanx+x

Prince Maurya 6 years ago

Sinx\1+sinx*1-sinx\1-sinx= sinx -sin²x/cos²x=sinx\cos²x-sin²x\cos²x =
  • 1 answers

Vishakha Dhiman 6 years ago

Convert it into sin-cos......and then rationalise it
  • 1 answers

Arisha Ashraf 6 years ago

Then R is a subset of A Cartesian product B
  • 1 answers

Tez Rez 6 years ago

Simply apply the rule of integration of (ax + b)^n
  • 1 answers

Archana Goel 6 years ago

Do it from ncert activities dowload the pdf and ask the ch from your teachers.
  • 1 answers

Arpita Sharma 6 years ago

1/2√x + 1/2√y * dy/dx = 0 1/2√x = -1/2√y * dy/dx dy/dx = -1/2√y /1/√x dy/dx = -√y/√x... Hence, proved
  • 1 answers

Sia ? 6 years ago

Given: The diagonals of a parallelogram are equal.

To prove: Parallelogram is a rectangle.
Proof : In {tex}\triangle{/tex}ACB and {tex}\triangle{/tex}BDA,
AC = BD . . . [Given]
AB = BA . . . [Common]
BC = AD . . . [Opposite sides of parallelogram]
{tex}\therefore{/tex} {tex}\triangle{/tex}ACB {tex}\cong{/tex}{tex}\triangle{/tex}BDA . . .[By SSS property]
{tex}\therefore{/tex} {tex}\angle{/tex}ABC = {tex}\angle{/tex}BAD . . . [c.p.c.t.] . . . .(1)
As AD || BC . . . [Opposite sides of parallelogram]
transversal AB intersects them.
{tex}\therefore{/tex} {tex}\angle{/tex}BAD + {tex}\angle{/tex}ABC = 180o . . . [Sum of interior angle on the same side of a transversal] . . . .(2)
{tex}\angle{/tex}BAD = {tex}\angle{/tex}ABC = 90o . . . [From (1) and (2)]
{tex}\therefore{/tex} {tex}\angle{/tex}A = 90o
{tex}\therefore{/tex} Parallelogram ABCD is a rectangle.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App