No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Arun Soni 8 years, 4 months ago

{tex}\eqalign{ & {\rm{Here,}}\vec a = 2\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over i} + 3\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over j} + \hat k \cr & {\rm{ }}\vec b = \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over i} - \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over j} + 2\hat k \cr & {\rm{ \vec a \times \vec b = }}\left| {\matrix{ {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over i} } & {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over j} } & {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} } \cr 2 & 3 & 1 \cr 1 & { - 1} & 2 \cr } } \right| \cr & = \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over i} \left[ {3 \times 2 - 1 \times ( - 1)} \right] - \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over j} \left[ {2 \times 2 - 1 \times (1)} \right] + \hat k\left[ {2 \times ( - 1) - 3 \times 1} \right] \cr & = 7\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over i} - 3\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over j} - 5\hat k \cr} {/tex}

  • 0 answers
  • 0 answers
  • 1 answers

Sunil C N 8 years, 4 months ago

Force =Mass* Accln

N=Kg.m/s2

so

T=( Kg.m/N)^0.5

  • 1 answers

Sunil C N 8 years, 4 months ago

x-t curve gives the position time graph which tells the posistion of the body at any instant. The derviative or slope of the tangent  to the curve on x-t curve gives velocity at that instant. On v-t cuve similarily if tangent is drawn at a point acceleration at that instant  will be the slope of the tangent drawn at that point.

x-t curve cannot give acceleration graph however the slopes at two points on the graph gives speed at two different times. From this avg acceleration can be calculated.

For acceleration graph,  acceleration at all instants needs to be claculated.

Slope at t1 and t2 be v1 and v

Then acceleration between these two periods is (v2 -v1) /(t2-t1)

  • 1 answers

Pushpendra Singh 8 years, 4 months ago

U=5

a=2

S=20

Apply second eq of motion . 

  • 2 answers

Payal Singh 8 years, 4 months ago

Distance travelled in last second of journey = 24.5 m 

Applying,

s​​​​​​n{tex}u+{1\over 2}a(2n-1){/tex}

as initial velocity u = 0 and body is under freely Fall so a = g = 9.8 

{tex}24.1 = 0 +{9.8\over 2}(2n-1){/tex}

{tex}=> 5 = 2n-1{/tex}

=> n = 3

It means body was in air for 3 seconds.

Total distance covered in 3 seconds

{tex}s = {1\over 2}gt^2{/tex}

{tex}=> s = {1\over 2}\times 9.8\times 9{/tex}

=> s = 44.1 m

 

Dr Pathikrt Banerjee 8 years, 4 months ago

<pre> (1/2)g((t+1)2-t2)=24.5</pre>

Ans= 44 m

  • 1 answers

Ashutosh Kumar 8 years, 4 months ago

Astronomers estimate the distance of nearby objects in space by using a method called stellar parallax, or trigonometric parallax. Simply put, they measure a star's apparent movement against the background of more distant stars as Earth revolves around the sun. ... They also measure small angles in arcseconds.

  • 0 answers
  • 1 answers

Sahdev Sharma 8 years, 4 months ago

Let initial velocity = u

Acceleration = a

Using equation

{tex}s = ut+{1\over 2}at^2{/tex}

For first 2 sec

{tex}20 = 2u+{1\over 2}4a{/tex}

{tex}20 = 2u+2a{/tex}

{tex}10=u+a \ ....... (1){/tex}

Now distance covered in 2 to 5 sec is given 40m

{tex}40 = 5u+{1\over 2}25a-20{/tex}

=> 120 = 10u +25 a

=> 24 = 2u+5a ....(2)

Solving (1) and (2), we get

{tex}a= {4\over 3}\ m/s^2{/tex}

And u {tex}={26\over 3}\ m/s{/tex}

 

  • 1 answers

Sunil C N 8 years, 4 months ago

check {tex} {d^2}y\over dt^2{/tex},  {tex} {d^2}z \over dt^2{/tex},and  {tex} {d^2}x \over dt^2{/tex} i.e check for magnitude of acceleration in three directions

if any two of them is non zero and third one is zero then force is two dimesnional

if three of them are non zeros its three dimensional

if all are zero then no force exists

  • 1 answers

Sunil C N 8 years, 4 months ago

check {tex} {d^2}y\over dt^2{/tex},  {tex} {d^2}z \over dt^2{/tex},and  {tex} {d^2}x \over dt^2{/tex} i.e check for magnitude of acceleration in three directions

if any two of them is non zero and third one is zero then force is two dimesnional

if three of them are non zeros its three dimensional

if all are zero then no force exists

  • 1 answers

Sunil C N 8 years, 4 months ago

check {tex} {d^2}y\over dt^2{/tex},  {tex} {d^2}z \over dt^2{/tex},and  {tex} {d^2}x \over dt^2{/tex} i.e check for magnitude of acceleration in three directions

if any two of them is non zero and third one is zero then force is two dimesnional

if three of them are non zeros its three dimensional

if only one is non zero and all others zero its one dimensional

if all are zero then no force exists

  • 2 answers

Arpan Bhowmick 8 years, 4 months ago

33.3 m

Sahdev Sharma 8 years, 4 months ago

First case

Initial velocity u = 30 km/h {tex}= {25\over 3}\ m/s{/tex}

As it stops so Final velocity v = 0

time taken t  = 8 m

Acceleration of car = a 

We know,

{tex}a = {v-u\over t}{/tex}

={tex}-{25\over 24}\ m/s^2{/tex}

Second case : 

As same breaks applied so acceleration is same.

initial velocity u = 60 km/h {tex}={50\over 3}\ m/s{/tex}

As it comes to rest so final velocity v = 0 m/s

Distances covered before rest = s

We know,

{tex}v^2-u^2= 2as{/tex}

=> {tex}(0)^2-({50\over 3})^2= 2\times {-25\over 24}\times s{/tex}

{tex}=> s =-{2500\over 9}\times {-24\over 25}\times {1\over 2}{/tex}

= 33.3 m

  • 1 answers

Kriti Bhawsar 8 years, 4 months ago

Area of photo=1.75 cm2=1.75×10-4m2

Area of image of photo=1.55m2

Magnification (areal)=1.55/1.75×10-4=0.885×10-4

Magnification(linear)=√areal magnification

                                      =√0.885×104

                                       =0.94×102

 

  • 1 answers

Jyoti Venkatesh 8 years, 5 months ago

Let h be the height of the tower and t the time taken 

u=0 and g= 10m/s2

Using S= ut +1/2 gt2

h= 0+5t2  -----(1)

distance travelled in last 2 seconds is 40 m

again using S= ut +1/2 gt2

h-40= 0+5(t-2)2 -----(2)

subracting 2 from 1

h-h+40= 5(t2 - (t-2)2  

8= (t2 - (t-2)2 

8= 4t-4

t=3

substituting t in equation 1

h= 5x 3 x 3= 45 m

Height of tower = 45 m

 

  • 2 answers

Sahdev Sharma 8 years, 4 months ago

Centrifugal force is defined as, “The apparent force, equal and opposite to the centripetal force, drawing a rotating body away from the center of rotation, caused by the inertia of the body

Dr Pathikrt Banerjee 8 years, 5 months ago

A force, arising from the body's inertia, which appears to act on a body moving in a circular path and is directed away from the centre around which the body is moving.

  • 1 answers

Sahdev Sharma 8 years, 5 months ago

Speed of the man, vm = 4 km/h

Width of the river = 1 km

Time taken to cross the river = {tex}Width\ of \ the \ river \over Speed \ of \ the \ river {/tex}{tex}= { 1\over 4} h ={ 1 × 60 \over 4 }= 15\ min{/tex}

  • 1 answers

Sunil C N 8 years, 4 months ago

v2-u2=2as (use this formula)

{tex}s = {v^2 \over 2f}{/tex} 

s2=v*t

s3={tex} {v^2 \over f}{/tex}  ,s3=2*s 

total distansce=5s

s+{tex}t* {\sqrt{s*2f}}{/tex}+2s=5s

{tex}t* {\sqrt{s*2f}}=2s{/tex}

{tex}s=ft^2/2{/tex}

 

  • 1 answers

Poulami Dasgupta 8 years, 5 months ago

Force = 500- 100t

Impulse( as a function of time) = {tex}dF\over dt{/tex}

                                                  = {tex}d(500-100t)\over dt{/tex}

                                                  = -100

  • 2 answers

Payal Singh 8 years, 5 months ago

Weber is SI unit of magnetic flux is Weber.

Dimensional formula = {tex}ML^2T^{−2}A^{−2}{/tex}

Sahdev Sharma 8 years, 5 months ago

{tex}ML^2T^{-2}A^{-2}{/tex}

  • 1 answers

Lalit Gautam 8 years, 5 months ago

By using tangent table we can find this value

{tex}\begin{array}{l} \theta = {\tan ^{ - 1}}(\frac{{40}}{{30}})\\ \theta = {\tan ^{ - 1}}(1.33)\\ \theta = {53^ \circ }7' \end{array}{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App