Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Satya Ranjan Tulu 1 year, 11 months ago
- 2 answers
Shanika Sharma 1 year, 11 months ago
Posted by Shanika Sharma 1 year, 11 months ago
- 1 answers
Preeti Dabral 1 year, 11 months ago
It is generally accepted that if the coefficient of linear expansion is the same in all directions for a given material, then the coefficient of superficial expansion is approximately twice the coefficient of linear expansion and the coefficient of cubical expansion three times the coefficient of linear expansion.
Posted by Shanika Sharma 1 year, 11 months ago
- 1 answers
Preeti Dabral 1 year, 11 months ago
{tex}\begin{aligned} & v=\frac{\text { Rate of flow }}{a} \\ & \text { Rate of flow }=0.2 \mathrm{~m}^3 \mathrm{~s}^{-1} a= \\ & v=\frac{0.2 \mathrm{~m}^s \mathrm{~s}^{-1}}{0.02 \mathrm{~m}^2}=10 \mathrm{~ms}^{-1} \end{aligned}{/tex}
Posted by Nishant Rajput 1 year, 11 months ago
- 1 answers
Shanika Sharma 1 year, 11 months ago
Posted by Shanika Sharma 1 year, 11 months ago
- 1 answers
Sakshi Masal 1 year, 11 months ago
Posted by Pardeep Sharma 1 year, 11 months ago
- 1 answers
Sakshi Masal 1 year, 11 months ago
Posted by Pardeep Sharma 1 year, 11 months ago
- 1 answers
Posted by Tushar Kumar 1 year, 11 months ago
- 3 answers
Posted by Methli Sharma 1 year, 11 months ago
- 1 answers
Shanika Sharma 1 year, 11 months ago
Posted by Rahul Yadav 1 year, 11 months ago
- 2 answers
Gopi Kishan Kumar 1 year, 11 months ago
Mitali Sharma 1 year, 11 months ago
Posted by Rohit Kumar 1 year, 11 months ago
- 1 answers
Preeti Dabral 1 year, 11 months ago
The speed of light in vacuum (c) = 1 new unit of length s-1
Time taken by light to reach the Earth,
t = 8 min + 20s = (8 {tex}\times{/tex} 60 + 20) s = 500 s
{tex}\therefore{/tex} Distance between the Sun and the Earth
= Speed of light {tex}\times{/tex} Time
x = c {tex}\times{/tex} t = 1 new unit of length s-1 {tex}\times{/tex} 500 s
= 500 new units of length
Posted by Dharshan Shakresh 1 year, 11 months ago
- 1 answers
Shabya Shaikh 1 year, 11 months ago
Posted by Naresh Pukhram 1 year, 11 months ago
- 1 answers
Shanika Sharma 1 year, 11 months ago
Posted by Abigail Lalnunnem 1 year, 11 months ago
- 1 answers
Preeti Dabral 1 year, 11 months ago
Similarities: Both opposes relative motion. ... Viscous force depends on the velocity gradient and area of contact and frictional force independent of area of contact and relative velocity. Viscosity of liquid decrease with increase in temperature, Where as friction independent of temperature.
Posted by Dashrath Singh 1 year, 11 months ago
- 1 answers
Preeti Dabral 1 year, 11 months ago
benzene contracts in winter. So 5 litre of benzene will weigh more in winter than in summer.
Posted by Miss Akanksha 2 years ago
- 3 answers
Shanika Sharma 1 year, 11 months ago
Posted by Ayush Raj 2 years ago
- 1 answers
Ayaana Riyas 2 years ago
Posted by Shruti Dhiman 2 years ago
- 2 answers
Ravi Choudhary 2 years ago
Posted by Divya Menariya 2 years ago
- 1 answers
Preeti Dabral 2 years ago
- As AO = BO = CO = 1 m, hence we have
{tex}\left| \overrightarrow { F _ { A } } \right| = \left| \overrightarrow { F _ { B } } \right| = \left| \overrightarrow { F _ { C } } \right| = \frac { G M \cdot 2 M } { ( 1 ) ^ { 2 } } = 2 G M ^ { 2 }{/tex}
If we consider direction parallel to BC as x-axis and perpendicular direction as y-axis, then as shown in figure, we have
{tex}\vec { F } _ { A } = 2 G M ^ { 2 } \hat { j }{/tex}
{tex}\vec { F } _ { B } = \left( - 2 G M ^ { 2 } \cos 30 ^ { \circ } \hat { i } - 2 G M ^ { 2 } \sin 30 ^ { \circ } \hat { j } \right){/tex}
and {tex}\overrightarrow { F _ { C } } = \left( 2 G M ^ { 2 } \cos 30 ^ { \circ } \hat { i } - 2 G M ^ { 2 } \sin 30 ^ { \circ } \hat { j } \right){/tex}
Therefore, the net force on mass 2M placed at the centroid O is given by,
{tex}\vec { F } = \vec { F } _ { A } + \vec { F } _ { B } + \vec { F } _ { C } {/tex}
{tex}= 2 G M ^ { 2 } \left[ j + \left( - \frac { \sqrt { 3 } } { 2 } \hat { i } - \frac { 1 } { 2 } \hat { i } \right) + \left( \frac { \sqrt { 3 } } { 2 } \hat { i } - \frac { 1 } { 2 } \hat { j } \right) \right]{/tex}
{tex}=0{/tex}
Posted by Noyone Akter 2 years ago
- 1 answers
Preeti Dabral 2 years ago
The work obtained in bringing a body from infinity to a point in gravitational field is called gravitational potential energy. Force of attraction between the earth and the object when an object is at the distance a from the center of the earth. F=x2GmM.
Posted by Laxman Das 1 year, 10 months ago
- 1 answers
Preeti Dabral 1 year, 10 months ago
Distance to market s=2.5km=2.5×103 =2500m
Speed with which he goes to market =5km/h={tex}5 \frac{10^3}{3600}=\frac{25}{18} \mathrm{~m} / \mathrm{s}{/tex}
Speed with which he comes back = {tex}7.5 \mathrm{~km} / \mathrm{h}=7.5 \times \frac{10^3}{3600}=\frac{75}{36} \mathrm{~m} / \mathrm{s}{/tex}
(a)Average velocity is zero since his displacement is zero.
(b) (i)Since the initial speed is 5km/s and the market is 2.5 km away,time taken to reach market: {tex}\frac{2.5}{5}=1 / 2 \mathrm{~h}=30 \text { minutes. }{/tex}
Average speed over this interval =5km/h
(ii)After 30 minutes,the man is travelling wuth 7.5 km/h speed for 50-30=20 minutes.The distance he covers in 20 minutes :{tex}7.5 \times \frac{1}{3}=2.5 \mathrm{~km}{/tex}
His average speed in 0 to 50 minutes: Vavg =distance traveled/time {tex}=\frac{2.5+2.5}{(50 / 60)}=6 \mathrm{~km} / \mathrm{h}{/tex}
(iii)In 40-30=10 minutes he travels a distance of : {tex}7.5 \times \frac{1}{6}=1.25 \mathrm{~km}{/tex}
{tex}\mathrm{V}_{\mathrm{avg}}=\frac{2.5+1.25}{(40 / 60)}=5.625 \mathrm{~km} / \mathrm{h}{/tex}
Posted by Danish Khan 2 years ago
- 2 answers
Preeti Dabral 2 years ago
As the depth increased the mass of the earth decreases. At the surface of earth this value will be maximum because radius will be maximum. When radius becomes less this value also decreases. Hence acceleration due to gravity decreases with increase in the depth.
Posted by Kanishka Parmar Kanishka 2 years ago
- 1 answers
Preeti Dabral 2 years ago
A solid cylinder rolling up an inclination is shown in the following figure.
Initial velocity of the solid cylinder, v = 5 m/s
Angle of inclination, {tex}\theta = 30 ^ { \circ }{/tex}
Height reached by the cylinder = h
- Energy of the cylinder at point A will be purely kinetic due to the rotation and translational motion. Hence, total energy at A
= KErot + KEtrans
= {tex}\frac { 1 } { 2 } I \omega ^ { 2 } + \frac { 1 } { 2 } m v ^ { 2 }{/tex}The energy of the cylinder at point B will be purely in the form of gravitational potential energy = mgh
Using the law of conservation of energy, we can write:
{tex}\frac { 1 } { 2 } I \omega ^ { 2 } +\frac { 1 } { 2 } m v ^ { 2 } = m g h{/tex}
Moment of inertia of the solid cylinder, {tex}I = \frac { 1 } { 2 } m r ^ { 2 }{/tex}
{tex}\therefore \frac { 1 } { 2 } \left( \frac { 1 } { 2 } m r ^ { 2 } \right) \omega ^ { 2 } + \frac { 1 } { 2 } m v ^ { 2 } = m g h{/tex}
{tex}\frac { 1 } { 4 } I \omega ^ { 2 } + \frac { 1 } { 2 } m v ^ { 2 } = m g h{/tex}
But we have the relation, {tex}v = r \omega{/tex}
{tex}\therefore \frac { 1 } { 4 } v ^ { 2 } + \frac { 1 } { 2 } v ^ { 2 } = g h{/tex}
{tex}\frac { 3 } { 4 } v ^ { 2 } = g h{/tex}
{tex}\therefore h = \frac { 3 } { 4 } \frac { v ^ { 2 } } { g }{/tex}
{tex}= \frac { 3 } { 4 } \times \frac { 5 \times 5 } { 9.8 } = 1.91 \mathrm { m }{/tex}To find the distance covered along the inclined plane
In {tex}\Delta A B C{/tex}:
{tex}\sin \theta = \frac { B C } { A B }{/tex}
{tex}\sin 30 ^ { \circ } = \frac { h } { A B }{/tex}
{tex}A B = \frac { 1.91 } { 0.5 } = 3.82 \mathrm { m }{/tex}
Hence, the cylinder will travel 3.82 m up the inclined plane. -
{tex}v = \left( \frac { 2 g h } { 1 + \frac { K ^ { 2 } } { R ^ { 2 } } } \right) ^ { \frac { 1 } { 2 } }{/tex}
{tex}\therefore v = \left( \frac { 2 g A B \sin \theta } { 1 + \frac { K ^ { 2 } } { R ^ { 2 } } } \right) ^ { \frac { 1 } { 2 } }{/tex}
For the solid cylinder, {tex}K ^ { 2 } = \frac { R ^ { 2 } } { 2 }{/tex}
{tex}\therefore v = \left( \frac { 2 g A B \sin \theta } { 1 + \frac { 1 } { 2 } } \right) ^ { \frac { 1 } { 2 } }{/tex}
{tex}= \left( \frac { 4 } { 3 } g A B \sin \theta \right) ^ { \frac { 1 } { 2 } }{/tex}
The time taken to return to the bottom is:
{tex}t = \frac { A B } { v }{/tex}
{tex}= \frac { A B } { \left( \frac { 4 } { 3 } g A B \sin \theta \right) ^ { \frac { 1 } { 2 } } } = \left( \frac { 3 A B } { 4 g \sin \theta } \right) ^ { \frac { 1 } { 2 } }{/tex}
{tex}= \left( \frac { 11.46 } { 19.6 } \right) ^ { \frac { 1 } { 2 } } = 0.7645{/tex}
So the total time taken by the cylinder to return to the bottom is (2 {tex}\times{/tex} 0.764)= 1.53 s.as time of ascend is equal to time of descend for the following problem.
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app