No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Vidhi Jain 8 years, 4 months ago

-Pie by 18 means 10 degree.....so u have to use the identities of 3x .Because thrice of -pie by 18 is 30 degree
  • 0 answers
  • 0 answers
  • 2 answers

Sourabh Thakur 8 years, 4 months ago

Real no. are those no. which can express on number line

Dharmendra Kumar 8 years, 4 months ago

Real Numbers is a set of rational and irrational numbers.

  • 2 answers

Rashmi Bajpayee 8 years, 4 months ago

{tex}{{\sin \left( {{\rm{A}} - {\rm{B}}} \right)} \over {\cos {\rm{A}}\cos {\rm{B}}}} + {{\sin \left( {{\rm{B}} - {\rm{C}}} \right)} \over {\cos {\rm{B}}\cos {\rm{C}}}} + {{\sin \left( {{\rm{C}} - {\rm{A}}} \right)} \over {\cos {\rm{C}}\cos {\rm{A}}}}{/tex}

{tex}{{\sin {\rm{A}}\cos {\rm{B}} - \cos {\rm{A}}\sin {\rm{B}}} \over {\cos {\rm{A}}\cos {\rm{B}}}} + {{\sin {\rm{B}}\cos {\rm{C}} - \cos {\rm{B}}\sin {\rm{C}}} \over {\cos {\rm{B}}\cos {\rm{C}}}} + {{\sin {\rm{C}}\cos {\rm{A}} - \cos {\rm{C}}\sin {\rm{A}}} \over {\cos {\rm{C}}\cos {\rm{A}}}}{/tex}

{tex}\eqalign{ & {{\sin {\rm{A}}\cos {\rm{B}}\cos {\rm{C}} - \cos {\rm{A}}\sin {\rm{B}}\cos {\rm{C}} + \cos {\rm{A}}\sin {\rm{B}}\cos {\rm{C}} - \cos {\rm{A}}\cos {\rm{B}}\sin {\rm{C}} + \sin {\rm{C}}\cos {\rm{A}}\cos {\rm{B}} - \cos {\rm{B}}\cos {\rm{C}}\sin {\rm{A}}} \over {\cos {\rm{A}}\cos {\rm{B}}\cos {\rm{C}}}} \cr & \cr} {/tex}

{tex}{0 \over {\cos {\rm{A}}\cos {\rm{B}}\cos {\rm{C}}}}{/tex}

= 0

Hence proved

Jishan Khan 8 years, 4 months ago

Prove 0
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Sumit Singh 8 years, 4 months ago

Root 3 divided by2
  • 0 answers
  • 0 answers
|x|
  • 1 answers

Chanchal Chaudhary 8 years, 4 months ago

Its mod x
  • 0 answers
  • 0 answers
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Govind Singh 7 years, 11 months ago

Let ABCD is the trapezium and h is the height which is required to be found.

Let AB=11 cm, CD=6 cm and AB is parellel to CD.

Let distance between foot of perpendicular h and A is X.

So distance between B and foot of 2nd perpendicular from C=11–6-x=5-x.

There are 2 rt. angled triangles.

Applying Pythogorous theorem,

For one triangle,

h^2=3^2-x^2 .........(1)

For 2nd triangle,

h^2=4^2-(5-x)^2 ........(2)

From (1)&(2), x=1.8 cm and

required h=2.4 cm

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App