No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Raveesh Yadav 8 years, 4 months ago

With teh help of analyser

 

  • 0 answers
  • 1 answers

Chandrabhan Rawat 8 years, 4 months ago

4
  • 3 answers

🅿🅰🆆🅰🅽 . 7 years, 10 months ago

= -cos (1710)°
=-cos (180*10-90)°
= -cos (-90)°
= cos (90)°
= 0

Chandrabhan Rawat 8 years, 4 months ago

5×360°-90° {360-Q} Cos90°{cos90°=0} 0

Neha Yadav 8 years, 4 months ago

Cos(1800+(-1710)) Cos (90) 0
  • 0 answers
  • 3 answers

Neha Yadav 8 years, 4 months ago

5+5×5-1 =5+25-1 =30-1 =29

Abhishek Singh 8 years, 4 months ago

29 by BODMAS

Aman Rajput 8 years, 4 months ago

5
  • 1 answers

Anshu Mathur 8 years, 4 months ago

Universal set is common part
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Sayali Pingle 8 years, 4 months ago

Sin 2x=-cos x 2sin x cos x=-cosx Cos x=0 Hence x= (2n+1)pi/2 Also 2sin x=-1 Sinx= -1/2 Hence x=npi - (-1)^n× pi/6
  • 1 answers

Sayali Pingle 8 years, 4 months ago

Using identity tan(A+B)=TanA + tanB/1-tanAtanB Tan (A+B)=( a/a+1 + a/2a+1)/1- a/a+1×a/2a+1 After solving we get A+B= arctan( 3a+2)a^2/a^2+3a+1
  • 1 answers

Sudhanshu Baranwal 8 years, 4 months ago

It will not included set A and B
  • 0 answers
  • 1 answers

Abhinav Bhattacharyya 8 years, 4 months ago

Yes
  • 1 answers

Harsh Magalam Verma 8 years, 4 months ago

AP i.e.Arithmetic Progression, is a sequence which starts with a unique term and further consecutive terms do differ by a real number called as common difference.
  • 1 answers

Vishal Dange 8 years, 4 months ago

Think by fresh mind what is my capacity to do so. According to it give specific time to every subject
  • 2 answers

Anitta Jose 8 years, 4 months ago

1/√3

Shivam Garg 8 years, 4 months ago

1/root3
  • 1 answers

Anitta Jose 8 years, 4 months ago

-9
  • 1 answers

Rasmi Rv 8 years, 4 months ago

{tex}Let\; the \quad angles\ be\quad x,2x\; and\; 3x\quad then,x+2x+3x={ 180^{ o } }\Rightarrow 6x=180\Rightarrow x{ { =\frac { 180 }{ 6 } } }={ 30^{ o\\ } }\\ Using\; sine\quad rule\quad we\quad have\frac { a }{ sinA } =\frac { b }{ sinB } =\frac { c }{ sinC } =k(say)\\ Herea=k\sin 30,b=k\sin 60,c=k\sin 90\\ \Rightarrow a=\frac { { { k } } }{ 2 } ,b={ { \frac { \sqrt { 3 } }{ 2 } } }.k,c={ 1 }.k\\ a{ { :b{ { : } }c } }=\frac { { { k } } }{ 2 } { { :\frac { k\sqrt { 3 } }{ 2 } { { : } } } }{ 1 }.k\\ \Rightarrow a{ { :b{ { : } }c } }=1{ { :\sqrt { 3 } { { : } }2 } }{/tex}

  • 0 answers
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App