No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Harshdeep Singh 6 years, 7 months ago

Tu ki laina pdhla apna

Sia ? 6 years, 7 months ago

By the tangent subtraction formula:
tan(A - B) = [tan(A) - tan(B)]/[1 + tan(A)tan(B)].
Thus:
tan(13π/12)
= tan(4π/3 - π/4), from the hint
= [tan(4π/3) - tan(π/4)]/[1 + tan(4π/3)tan(π/4)], from the above formula
= (-1 + √3)/(1 + √3)
= -(1 - √3)/(1 + √3)
= -(1 - √3)^2/[(1 + √3)(1 - √3)], by rationalizing
= -(1 - √3)^2/(1 - 3), via difference of squares
= (1/2)(1 - √3)^2
= (1/2)(1 - 2√3 + 3)
= (1/2)(4 - 2√3)
= 2 - √3.
  • 0 answers
  • 1 answers

Sia ? 6 years, 7 months ago


since,sin60=√ 3/2

= √ 3/2( sin20sin40sin80)

=√ 3/2( sin20sin80sin40)

=√ 3/4 [(2sin20sin40)sin80]

on applying [cos(A-B)-cos(A+B) = 2sinAsinB]

we get,

= √ 3/4 (cos20-cos60)sin80 [since,cos(-a)=cosa]

= √ 3/4(cos20sin80-cos60sin80)

= √ 3/8(2sin80cos20-sin80)

= √ 3/8(sin100+sin60-sin80)

= √ 3/8( √ 3/2+sin100-sin80 )

= √ 3/8( √ 3/2+sin(180-80)-sin80 )

= √ 3/8( √ 3/2+sin80-sin80 ) [since,sin(180-a)=sina]

= √ 3/8( √ 3/2)

= 3/16
  • 1 answers

Sia ? 6 years, 7 months ago

An imaginary number is a complex number that can be written as a real number multiplied by the imaginary unit i, which is defined by its property i2 = −1.
  • 1 answers

Sia ? 6 years, 7 months ago

Let P(n) = {tex}1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + .... + n(n + 1)(n + 2){/tex}{tex} = \frac{{n(n + 1)(n + 2)(n + 3)}}{4}{/tex}
For n = 1
{tex}P(1) = 1 \times 2 \times 3 = \frac{{1 \times 2 \times 3 \times 4}}{4} \Rightarrow 6 = 6{/tex}
{tex}\therefore {/tex} P (1) is true
Let P(n) be true for n = k.
{tex}\therefore P(k) = 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + ...{/tex}{tex} + (k + 1)(k + 2) = \frac{{k(k + 1)(k + 2)(k + 3)}}{4}{/tex} ... (i)
For n = k + 1
{tex}P(k + 1) = 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + ... + {/tex}{tex}k(k + 1)(k + 2) + (k + 1)(k + 2)(k + 3){/tex}
{tex} = \frac{{k(k + 1)(k + 2)(k + 3)}}{4}{/tex} + (k + 1) (k + 2) (k + 3) [Using (i)]
{tex} = (k + 1)(k + 2)(k + 3)\left[ {\frac{{k + 4}}{4}} \right]{/tex}
{tex} = \frac{{(k + 1)(k + 2)(k + 3)(k + 4)}}{4}{/tex}
{tex}\therefore {/tex} P(k + 1) is true.
Thus P(k) is true {tex} \Rightarrow {/tex} P (k + 1) is true.
Hence by principle of mathematical induction, P(n) is true for all {tex}n \in N{/tex}.

  • 2 answers

Shubham Singhal 6 years, 7 months ago

6t

Priyanshu Kumar 6 years, 7 months ago

3
  • 1 answers

Sia ? 6 years, 7 months ago

The given system of equations is
{tex}3x - \frac{{y + 7}}{{11}} + 2 = 10{/tex} ...(i)
{tex}2y + \frac{{x - 11}}{7} = 10{/tex} ....(ii)
From (i), we get
{tex}\frac{{33x - y - 7 + 22}}{{11}} = 10{/tex}
{tex}\Rightarrow{/tex} {tex}33x - y + 15 = 10 × 11{/tex}
{tex}\Rightarrow{/tex} {tex}33x + 15 - 110 = y{/tex}
{tex}\Rightarrow{/tex} {tex}y = 33x - 95{/tex}
From (ii), we get
{tex}\frac{{14y + x + 11}}{7} = 10{/tex}
{tex}\Rightarrow{/tex} {tex}14y + x + 11 = 10 × 7{/tex}
{tex}\Rightarrow{/tex} {tex}14y + x + 11 = 70{/tex}
{tex}\Rightarrow{/tex} {tex}14y + x = 70 - 11{/tex}
{tex}\Rightarrow{/tex} {tex}14y + x = 59{/tex} ....(iii)
Substituting y = 33x - 95 in (iii), we get
14(33x - 95) + x = 59
{tex}\Rightarrow{/tex} 462x - 1330 + x = 59
{tex}\Rightarrow{/tex} 463x = 59 + 1330
{tex}\Rightarrow{/tex} 463x = 1389
{tex}\Rightarrow x = \frac{{1389}}{{463}} = 3{/tex}
Putting x = 3, in y = 33x - 95, we get
y = 33 {tex}\times{/tex} 3 - 95
{tex}\Rightarrow{/tex} y = 99 - 95 = 4
{tex}\Rightarrow{/tex} y = 4
Hence, Solution of the given system of equation is x = 3, y = 4.

  • 0 answers
  • 1 answers

Sidddheshwar Pandey 6 years, 7 months ago

Grade
  • 2 answers

Roshan Kumar 6 years, 7 months ago

46

Gaurav Singh 6 years, 7 months ago

46
  • 1 answers

Himanshu Prajapati 6 years, 7 months ago

6
  • 1 answers

Rakesh Kumar 6 years, 7 months ago

A'℅
  • 0 answers
  • 2 answers

Ashish Choudhary 6 years, 7 months ago

Neither even nor odd

Sagar Chaudhary 6 years, 7 months ago

ZERO IS NITHER EVEN NOR ODD
  • 0 answers
  • 1 answers

Yogita Ingle 6 years, 7 months ago

We know that 180° = π radian.
40° 20'  = 40 1/3 degree = π /180 × 121/3 radian = 121π /540radian
Therefore 40° 20′ = 121π/540 radian.

  • 2 answers

Anuska Thakur 6 years, 7 months ago

Remember the formula - π^c = 180° ,where ^c denotes radian. So apply the formula

Yogita Ingle 6 years, 7 months ago

<div>We know that π radian = 180°.
Hence,

= 343° + 38′ + 10.9″ = 343°38′ 11″ approximately.
Hence 6 radians = 343° 38′ 11″ approximately.</div>

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App