No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 3 answers

Rishab Jain 6 years, 6 months ago

And b is what

Khushi Pandey 6 years, 6 months ago

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Ayush Vishwakarma?? 6 years, 6 months ago

1 to 15 number
  • 0 answers
  • 0 answers
  • 1 answers

Ayush Vishwakarma?? 6 years, 6 months ago

A×(BUC) = (A×B) U(A×C) (a,b,c)×(d,2) =(a,b,c)×(d)U (a,b,c)× (2)
  • 2 answers

Urvi Sharma 6 years, 6 months ago

It's not about universal truth

Urvi Sharma 6 years, 6 months ago

Example if you want to make set of all staff students and clerks group of your school so you can put by making set of teachers students and clerks in a one set and that set is called universal set
  • 3 answers

Urvi Sharma 6 years, 6 months ago

Power set is the only set which elements are again in set form

Jignesh Patel 6 years, 6 months ago

The collection of all subsets of a set A is called the power set of A.

Vaghesh Jadav 6 years, 6 months ago

All subset of set A is called power set
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Here {tex}f(x) = \frac{{{x^2} - 9}}{{x - 3}}{/tex}
f (x) assume real values for all real values of x except for x - 3 = 0 i.e .x = 3
Thus domain of f (x) = R - {3}
Let f (x) = y
{tex}\therefore y = \frac{{{x^2} - 9}}{{x - 3}} = \frac{{(x + 3)(x - 3)}}{{(x - 3)}}{/tex}
{tex} \Rightarrow {/tex} y = x + 3
y takes all real values except 6 as domain =R-{3}
Thus range of f (x) = R - {6}.

  • 1 answers

Sia ? 6 years, 6 months ago

RD Sharma
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex}{tex} + cos^4{/tex} {tex}\frac { 5 \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 7 \pi } { 8 }{/tex}
{tex}= cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\left( \frac { \pi } { 2 } + \frac { \pi } { 8 } \right){/tex} {tex}+ cos^4{/tex} {tex}\left( \frac { \pi } { 2 } + \frac { 3 \pi } { 8 } \right){/tex}
{tex}= cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} {tex}+ sin^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ sin^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} [{tex}\because{/tex} cos {tex}\left( \frac { \pi } { 2 } + \theta \right){/tex} = - sin {tex}\theta{/tex}]
= (cos4 {tex}\frac { \pi } { 8 }{/tex} + sin4 {tex}\frac { \pi } { 8 }{/tex}) + (cos4 {tex}\frac { 3 \pi } { 8 }{/tex} + sin4 {tex}\frac { 3 \pi } { 8 }{/tex})
= (cos4 {tex}\frac { \pi } { 8 }{/tex} + sin4 {tex}\frac { \pi } { 8 }{/tex} + 2 sin2 {tex}\frac { \pi } { 8 }{/tex} cos2 {tex}\frac { \pi } { 8 }{/tex} - 2 sin2 {tex}\frac { \pi } { 8 }{/tex} cos2 {tex}\frac { \pi } { 8 }{/tex}) + (cos{tex}\frac { 3 \pi } { 8 }{/tex} + sin4 {tex}\frac { 3 \pi } { 8 }{/tex} + 2 sin{tex}\frac { 3 \pi } { 8 }{/tex} cos2 {tex}\frac { 3 \pi } { 8 }{/tex} - 2 sin{tex}\frac { 3 \pi } { 8 }{/tex} cos{tex}\frac { 3 \pi } { 8 }{/tex})
= (cos{tex}\frac { \pi } { 8 }{/tex} + sin{tex}\frac { \pi } { 8 }{/tex})- 2 sin{tex}\frac { \pi } { 8 }{/tex} cos{tex}\frac { \pi } { 8 }{/tex} + (cos{tex}\frac { 3 \pi } { 8 }{/tex} + sin{tex}\frac { 3 \pi } { 8 }{/tex})2 - 2 sin{tex}\frac { 3 \pi } { 8 }{/tex} cos{tex}\frac { 3 \pi } { 8 }{/tex}
[{tex}\because{/tex} {tex}a^4 + b^4 = (a^2 + b^2) - 2a^2 b^2{/tex}]
= 1 - {tex}\frac { 1 } { 2 }{/tex} (2 sin {tex}\frac { \pi } { 8 }{/tex} cos {tex}\frac { \pi } { 8 }{/tex})+ 1 - {tex}\frac { 1 } { 2 }{/tex} (2 sin {tex}\frac { 3 \pi } { 8 }{/tex} cos {tex}\frac { 3 \pi } { 8 }{/tex})2
[{tex}\because{/tex} {tex}sin^2\theta  + cos^2\theta  = 1{/tex}]
= 2 - {tex}\frac { 1 } { 2 }{/tex} (sin 2 {tex}\times \frac { \pi } { 8 } ) ^ { 2 }{/tex} - {tex}\frac { 1 } { 2 }{/tex} (sin 2 {tex}\times \frac { 3 \pi } { 8 }{/tex})2  [{tex}\because{/tex} sin 2x = 2 sinx cosx]
= 2 - {tex}\frac { 1 } { 2 }{/tex} sin2 {tex}\frac { \pi } { 4 }{/tex} - {tex}\frac { 1 } { 2 }{/tex} sin2 {tex}\frac { 3 \pi } { 4 }{/tex}
= 2 - {tex}\frac { 1 } { 2 }{/tex} {tex}\times \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 } - \frac { 1 } { 2 } \times \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 }{/tex}
[{tex}\because{/tex} sin {tex}\frac { 3 \pi } { 4 }{/tex} = sin {tex}\left( \pi - \frac { \pi } { 4 } \right){/tex} = sin {tex}\frac { \pi } { 4 }{/tex}= {tex}\frac1{\sqrt2}{/tex}]
= 2 - {tex}\frac { 1 } { 2 } \times \frac { 1 } { 2 } - \frac { 1 } { 2 } \times \frac { 1 } { 2 }{/tex}
= 2 - {tex}\frac { 1 } { 4 } - \frac { 1 } { 4 }{/tex} = 2 - {tex}\frac { 1 } { 2 } = \frac { 3 } { 2 }{/tex}​​​​

  • 1 answers

Sia ? 6 years, 6 months ago

Yes, it is present in the syllabus.

  • 0 answers
  • 0 answers
  • 0 answers
  • 0 answers
  • 2 answers

Devendra Singh 6 years, 6 months ago

A={-2,-1,0,1,2}

Ashutosh Saini 6 years, 6 months ago

A={1,2}
  • 1 answers

Ashutosh Saini 6 years, 6 months ago

The Universal set is a set which contains all elements including itself.
  • 6 answers

Aman Shree 6 years, 6 months ago

-1

Naman Khetawat 6 years, 6 months ago

0

Nikhil Singh 6 years, 6 months ago

0

Sunny Kewat 6 years, 6 months ago

-1

Manas Bhutada 6 years, 6 months ago

-1

Nh Gabru Prajapati 6 years, 6 months ago

+3
  • 1 answers

Sia ? 6 years, 6 months ago

R is reflexive , as 2 divides a-a = 0
Now (a,b){tex}\in {/tex}R  implies (a-b) is divided by 2{tex}\Rightarrow{/tex} (b-a) is also divided by 2
Hence, (b,a){tex}\in {/tex}R
Hence, R is symmetric.
Now ,Let a,b,c {tex}\in{/tex}Z
If (a,b) {tex}\in {/tex}R
And (b,c) {tex}\in {/tex}R
Then a-b and b-c divided by 2

Therefore a-b is even and b-c is even

{tex}\Rightarrow{/tex}a-b +b-c is even, as sum of two even numbers is even 
{tex}\Rightarrow{/tex}(a-c) is even

So a-c is divided by 2
{tex}\Rightarrow{/tex}(a,c) {tex}\in {/tex}R
Hence it is transitive.

Therefore R is reflexive,symmetric and transitive

So R is an equivalence relation

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App