Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Kajal Asnani 6 years, 6 months ago
- 0 answers
Posted by Chanchal Thakur 6 years, 6 months ago
- 3 answers
Posted by Swaroop Suthar 6 years, 6 months ago
- 0 answers
Posted by Vaghesh Jadav 6 years, 6 months ago
- 0 answers
Posted by Durgesh Sahu 6 years, 6 months ago
- 0 answers
Posted by Hema Dwivedi 6 years, 6 months ago
- 1 answers
Ayush Vishwakarma?? 6 years, 6 months ago
Posted by Ankit Raj 6 years, 6 months ago
- 2 answers
Urvi Sharma 6 years, 6 months ago
Posted by Sumit Kumar 6 years, 6 months ago
- 3 answers
Urvi Sharma 6 years, 6 months ago
Jignesh Patel 6 years, 6 months ago
Posted by Pallavi Patel 6 years, 6 months ago
- 0 answers
Posted by Rahul Dalal 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Here {tex}f(x) = \frac{{{x^2} - 9}}{{x - 3}}{/tex}
f (x) assume real values for all real values of x except for x - 3 = 0 i.e .x = 3
Thus domain of f (x) = R - {3}
Let f (x) = y
{tex}\therefore y = \frac{{{x^2} - 9}}{{x - 3}} = \frac{{(x + 3)(x - 3)}}{{(x - 3)}}{/tex}
{tex} \Rightarrow {/tex} y = x + 3
y takes all real values except 6 as domain =R-{3}
Thus range of f (x) = R - {6}.
Posted by The Lyrer 6 years, 6 months ago
- 1 answers
Posted by Bhagwati Vashisth 6 years, 6 months ago
- 0 answers
Posted by All Topic Aryan 6 years, 6 months ago
- 0 answers
Posted by Mewa Singh 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
{tex}cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex}{tex} + cos^4{/tex} {tex}\frac { 5 \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 7 \pi } { 8 }{/tex}
{tex}= cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\left( \frac { \pi } { 2 } + \frac { \pi } { 8 } \right){/tex} {tex}+ cos^4{/tex} {tex}\left( \frac { \pi } { 2 } + \frac { 3 \pi } { 8 } \right){/tex}
{tex}= cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} {tex}+ sin^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ sin^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} [{tex}\because{/tex} cos {tex}\left( \frac { \pi } { 2 } + \theta \right){/tex} = - sin {tex}\theta{/tex}]
= (cos4 {tex}\frac { \pi } { 8 }{/tex} + sin4 {tex}\frac { \pi } { 8 }{/tex}) + (cos4 {tex}\frac { 3 \pi } { 8 }{/tex} + sin4 {tex}\frac { 3 \pi } { 8 }{/tex})
= (cos4 {tex}\frac { \pi } { 8 }{/tex} + sin4 {tex}\frac { \pi } { 8 }{/tex} + 2 sin2 {tex}\frac { \pi } { 8 }{/tex} cos2 {tex}\frac { \pi } { 8 }{/tex} - 2 sin2 {tex}\frac { \pi } { 8 }{/tex} cos2 {tex}\frac { \pi } { 8 }{/tex}) + (cos4 {tex}\frac { 3 \pi } { 8 }{/tex} + sin4 {tex}\frac { 3 \pi } { 8 }{/tex} + 2 sin2 {tex}\frac { 3 \pi } { 8 }{/tex} cos2 {tex}\frac { 3 \pi } { 8 }{/tex} - 2 sin2 {tex}\frac { 3 \pi } { 8 }{/tex} cos2 {tex}\frac { 3 \pi } { 8 }{/tex})
= (cos2 {tex}\frac { \pi } { 8 }{/tex} + sin2 {tex}\frac { \pi } { 8 }{/tex})2 - 2 sin2 {tex}\frac { \pi } { 8 }{/tex} cos2 {tex}\frac { \pi } { 8 }{/tex} + (cos2 {tex}\frac { 3 \pi } { 8 }{/tex} + sin2 {tex}\frac { 3 \pi } { 8 }{/tex})2 - 2 sin2 {tex}\frac { 3 \pi } { 8 }{/tex} cos2 {tex}\frac { 3 \pi } { 8 }{/tex}
[{tex}\because{/tex} {tex}a^4 + b^4 = (a^2 + b^2) - 2a^2 b^2{/tex}]
= 1 - {tex}\frac { 1 } { 2 }{/tex} (2 sin {tex}\frac { \pi } { 8 }{/tex} cos {tex}\frac { \pi } { 8 }{/tex})2 + 1 - {tex}\frac { 1 } { 2 }{/tex} (2 sin {tex}\frac { 3 \pi } { 8 }{/tex} cos {tex}\frac { 3 \pi } { 8 }{/tex})2
[{tex}\because{/tex} {tex}sin^2\theta + cos^2\theta = 1{/tex}]
= 2 - {tex}\frac { 1 } { 2 }{/tex} (sin 2 {tex}\times \frac { \pi } { 8 } ) ^ { 2 }{/tex} - {tex}\frac { 1 } { 2 }{/tex} (sin 2 {tex}\times \frac { 3 \pi } { 8 }{/tex})2 [{tex}\because{/tex} sin 2x = 2 sinx cosx]
= 2 - {tex}\frac { 1 } { 2 }{/tex} sin2 {tex}\frac { \pi } { 4 }{/tex} - {tex}\frac { 1 } { 2 }{/tex} sin2 {tex}\frac { 3 \pi } { 4 }{/tex}
= 2 - {tex}\frac { 1 } { 2 }{/tex} {tex}\times \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 } - \frac { 1 } { 2 } \times \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 }{/tex}
[{tex}\because{/tex} sin {tex}\frac { 3 \pi } { 4 }{/tex} = sin {tex}\left( \pi - \frac { \pi } { 4 } \right){/tex} = sin {tex}\frac { \pi } { 4 }{/tex}= {tex}\frac1{\sqrt2}{/tex}]
= 2 - {tex}\frac { 1 } { 2 } \times \frac { 1 } { 2 } - \frac { 1 } { 2 } \times \frac { 1 } { 2 }{/tex}
= 2 - {tex}\frac { 1 } { 4 } - \frac { 1 } { 4 }{/tex} = 2 - {tex}\frac { 1 } { 2 } = \frac { 3 } { 2 }{/tex}
Posted by Devashish Kumar 6 years, 6 months ago
- 1 answers
Posted by Devesh Sharma 6 years, 6 months ago
- 0 answers
Posted by Veena Nagaraj 6 years, 6 months ago
- 0 answers
Posted by M Kubendran 6 years, 6 months ago
- 0 answers
Posted by M Kubendran 6 years, 6 months ago
- 0 answers
Posted by Shivam Kumar Jha 6 years, 6 months ago
- 0 answers
Posted by Vivek Kumar 6 years, 6 months ago
- 0 answers
Posted by Krishna Gupta 6 years, 6 months ago
- 2 answers
Posted by Nirmala Devi 6 years, 6 months ago
- 0 answers
Posted by Neha Singh 6 years, 6 months ago
- 1 answers
Ashutosh Saini 6 years, 6 months ago
Posted by Nh Gabru Prajapati 6 years, 6 months ago
- 6 answers
Posted by Sk Dh 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
R is reflexive , as 2 divides a-a = 0
Now (a,b){tex}\in {/tex}R implies (a-b) is divided by 2{tex}\Rightarrow{/tex} (b-a) is also divided by 2
Hence, (b,a){tex}\in {/tex}R
Hence, R is symmetric.
Now ,Let a,b,c {tex}\in{/tex}Z
If (a,b) {tex}\in {/tex}R
And (b,c) {tex}\in {/tex}R
Then a-b and b-c divided by 2
Therefore a-b is even and b-c is even
{tex}\Rightarrow{/tex}a-b +b-c is even, as sum of two even numbers is even
{tex}\Rightarrow{/tex}(a-c) is even
So a-c is divided by 2
{tex}\Rightarrow{/tex}(a,c) {tex}\in {/tex}R
Hence it is transitive.
Therefore R is reflexive,symmetric and transitive
So R is an equivalence relation

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide