No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Tahir Khan 5 years, 8 months ago

23,123,123,123
  • 1 answers

Rituraj Pandey 7 years, 3 months ago

You can check its answer in ncert book of mathmatics on pg.no.65 example 19 in Chapter linear eq
  • 1 answers

Sia ? 6 years, 6 months ago


{tex}\cos \theta = \frac { 1 } { 2 } \text { or, } \theta = 60 ^ { \circ }{/tex}
Reflex {tex}\angle A O B = 240 ^ { \circ }{/tex}
{tex}\therefore A D B = \frac { 2 \times 3.14 \times 5 \times 240 } { 360 } = 20.93 \mathrm { cm }{/tex}
Hence length of elastic in contact = 20.93 cm
Now, {tex}A P = 5 \sqrt { 3 } \mathrm { cm }{/tex}
a ({tex}\triangle O A P{/tex}) = {tex}\;\frac12\times\mathrm{base}\times\mathrm{height}\;=\;\frac12\times5\times5\sqrt3\;=\frac{25\sqrt3}2{/tex}
Area {tex}( \Delta O A P + \Delta O B P )= 2\times\;\frac{25\sqrt3}2 = 25 \sqrt { 3 } = 43.25 \mathrm { cm } ^ { 2 }{/tex}
Area of sector OACB = {tex}\;\frac{\mathrm\theta}{360}\times\mathrm{πr}^2\;{/tex}
{tex}\frac { 25 \times 3.14 \times 120 } { 360 } = 26.16 \mathrm { cm } ^ { 2 }{/tex}
Shaded Area = 43.25 - 26.16 = 17.09 cm2

  • 3 answers

Harman Haru 7 years, 3 months ago

a3+ b3 + 3ab (a+b)

User User. 7 years, 3 months ago

a³+b³+3a²b+3ab²

Harshit Yadav 7 years, 3 months ago

a3+b3+3ab(a+b)
  • 2 answers

Shivam Baghel 7 years, 3 months ago

Check the n.c.e.r.t chapter no. 1

Manjeet Kaur 7 years, 3 months ago

Its answer is there in RS Aggarwal
  • 5 answers

Swati Khatri 7 years, 3 months ago

OMG !!!? Are u really in class 10 ?

Mahi Singh Oboroi 7 years, 3 months ago

2

Vivek Kumar 7 years, 3 months ago

Are you really in class 10 or your younger one had do it. You are lowing the position of cpass 10. Really ...... I am feeling very shy on seeing this.

Mohit Kashyap 7 years, 3 months ago

Did you do first time this type of questions

Om Zankat 7 years, 3 months ago

Are u seriously in class 10th???
  • 1 answers

Mansi Gupta 7 years, 3 months ago

tanQ+1/tanQ=5 tan^2Q+1/tanQ=5 Sec^2Q/tanQ=5 CosQ/cos^2Q×sinQ=5 CotQ=5
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}2x + y = 2{/tex} ...(i)
{tex}2y - x = 4{/tex} ...(ii)
from (i), {tex}2x + y = 2 {/tex}

<th scope="row">x</th> <th scope="row">y</th>
1 0 2
0 2 -2

from (ii), {tex}2y - x = 4 {/tex}

<th scope="row">x</th> <th scope="row">y</th>
0 -4 2
2 0 3


Area {tex}\triangle{/tex} = {tex}\frac{1}{2}{/tex}AB {tex}\times{/tex} CO
={tex}\frac{1}{2}{/tex} {tex}\times{/tex}{tex}\times{/tex} 2
=5 square units.

  • 3 answers

Rameshwar Singh 7 years, 3 months ago

And have to prove all sides and angles is 90 as parallelogram s opposite sides are equal it is a hint for u

Rameshwar Singh 7 years, 3 months ago

You have to do construction in it

Anurag Maurya 7 years, 3 months ago

Copy le aa
  • 1 answers

Rakesh Kumar Tiwari 7 years, 3 months ago

p(x) = 2x²+2ax+5x+10 ............(i),.................... take, x+a = 0 =› x = -a since x+a is a factor of (i) ............................. therefore, ......................................................... p(-a) = 0 ............................................................ =› 2(-a)² + 2a(-a)+5(-a)+10 = 0 ...................... =› 2a² - 2a² - 5a + 10 = 0 ................................. =› -5a = -10 =› a = 2
  • 2 answers

#Aditi~ Angel???? 7 years, 3 months ago

It's Hibiscus?

Neha Sharma 7 years, 3 months ago

Science
  • 1 answers

Sia ? 6 years, 6 months ago

x = cosec A + cos A and y = cosec A - cos A
Thus, we have
x + y = cosec A + cos A + cosec A - cos A = 2 cosec A
x - y = cosec A + cos A - cosec A + cos A = 2 cos A
L.H.S = {tex}\left( \frac { 2 } { x + y } \right) ^ { 2 } + \left( \frac { x - y } { 2 } \right) ^ { 2 } - 1{/tex}
{tex}= \left( \frac { 2 } { 2 \cos e c A } \right) ^ { 2 } + \left( \frac { 2 \cos A } { 2 } \right) ^ { 2 } - 1{/tex}
{tex}= \left( \frac { 1 } { \text{cosec} A } \right) ^ { 2 } + ( \cos A ) ^ { 2 } - 1{/tex}
= (sin A)2 + (cos A)2 - 1
= sin2A + cos2A - 1
= 1 - 1
= 0
= R.H.S

  • 3 answers

Priyanshu Kumar 7 years, 3 months ago

Bhai a+b me hole kaise kiya

Dharmendra Kumar 7 years, 3 months ago

(a+b)2 = a2 + b2 + 2ab

Shivangi Agrawal 7 years, 3 months ago

a2+ b2+2 ab
  • 1 answers

Om Zankat 7 years, 3 months ago

1.let x= 5 then y=1 2.let x=2 then y=2 3.let x= 8 then y=0
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

A(1, -2), B(2, 3), C(a, 2) and D(-4, -3)are the vertices of a parallelogram.
{tex}\Rightarrow{/tex}AB = CD and AD = BC
Consider AD = BC
{tex}\Rightarrow{/tex}AD2 = BC2
{tex}\Rightarrow{/tex}(-4 -1)2 + (-3 + 2)2 = (a - 2)2 + (2 - 3)2
{tex}\Rightarrow{/tex}(-5)2 = (a - 2)2
{tex}\Rightarrow{/tex} a - 2 = -5
{tex}\Rightarrow{/tex} a = -3
Area of {tex}\Delta A B C = \frac { 1 } { 2 } | 1 ( 3 - 2 ) + 2 ( 2 + 2 ) - 3 ( - 2 - 3 ) |{/tex}
{tex}= \frac { 1 } { 2 } | 1 + 8 + 15 |{/tex}
{tex}= \frac { 1 } { 2 } \times 24{/tex}
= 12 sq. units.
Diagonal of a parallelogram divides it into two equal triangles.
Area of parallelogram ABCD = 2 {tex}\times{/tex}12=24 sq. units
{tex}\Rightarrow {/tex} AB {tex}\times{/tex}Height = 24
{tex}\Rightarrow {/tex} AB{tex}\times{/tex}Height = 24
{tex}\Rightarrow \left[ \sqrt { ( 2 - 1 ) ^ { 2 } + ( 3 + 2 ) ^ { 2 } } \right] \times \text { Height } = 24{/tex}
{tex}\Rightarrow [ \sqrt { 1 + 25 } ] \times \text { Height } = 24{/tex}
{tex}\Rightarrow \text { Height } = \frac { 24 } { \sqrt { 26 } } = \frac { 12 \times \sqrt { 2 } \times \sqrt { 2 } } { \sqrt { 13 } \times \sqrt { 2 } }{/tex}
{tex}= \frac { 12 \sqrt { 2 } } { \sqrt { 13 } }{/tex}

  • 1 answers

Gitika Sharma 7E ? 7 years, 3 months ago

-372
  • 1 answers

Sia ? 6 years, 4 months ago

Steps of construction:

  1. Draw a circle with the help of a bangle.
  2. Take two non-parallel chords AB and CD of this circle.
  3. Draw the perpendicular bisectors of AB and CD. Let these intersect at O.
    Then O is the centre of this circle drawn.
  4. Take a point P outside the circle.
  5. Join PO and bisect it. Let M be the mid-point of PO.
  6. Taking M as centre and MO as radius, draw a circle. Let it intersect the given circle at the points Q and R.
  7. Join PQ and PR.
    Then, PQ and PR are the required two tangents.
    Then {tex}\angle PQO{/tex} is an angle in the semicircle and therefore,
    {tex}\angle PQO = 90^\circ {/tex}
    {tex} \Rightarrow PQ \bot OQ{/tex}
    Since OQ is a radius of the given circle, PQ has to be a tangent to the circle.
    Similarly, PR is also a tangent to the circle.
  • 3 answers

Gitika Sharma 7E ? 7 years, 3 months ago

7

Aashu Kumar 7 years, 3 months ago

7

Vaibhav Bhardwaj 7 years, 3 months ago

7
  • 3 answers

Aashu Kumar 7 years, 3 months ago

Value of A=10

Himanshu Chaudhary 7 years, 3 months ago

10

Irfan Hussain 7 years, 3 months ago

A= 10

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App