No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Ansh Yadav 7 years, 2 months ago

75314
  • 1 answers

Sia ? 6 years, 6 months ago

We have,
{tex}\frac{1}{{(x - 1)(x - 2)}} + \frac{1}{{(x - 2)(x - 3)}}{/tex} {tex}+ \frac{1}{{(x - 3)(x - 4)}} = \frac{1}{6}{/tex}
{tex}\Rightarrow{/tex}{tex} (x - 3)(x - 4) + (x - 1)(x - 4) + (x - 1)(x - 2) = {/tex}{tex}\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}
[{tex}\because{/tex} Multiplying both sides by (x -1)(x - 2)(x - 3)(x - 4)]
{tex}\Rightarrow{/tex} {tex}x^2 - 4x - 3x + 12 + x^2 - 4x - x + 4 + x^2 - 2x - x + 2 ={/tex} {tex}\frac{1}{6}{/tex}{tex}[(x - 1)(x - 2)(x - 3)(x - 4)]{/tex}
{tex}\Rightarrow{/tex} {tex}3x^2 - 15x + 18 ={/tex} {tex}\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}
{tex}\Rightarrow{/tex} {tex}3(x^2 - 5x + 6) =​​​​​​​{/tex} {tex}\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}
{tex}\Rightarrow{/tex} {tex}18[x^2 - 3x - 2x + 6] = (x - 1)(x - 2)(x - 3)(x - 4){/tex}
{tex}\Rightarrow{/tex} {tex}18[x(x - 3) - 2(x - 3)] = (x - 1)(x - 2)(x - 3)(x - 4){/tex}
{tex}\Rightarrow{/tex} {tex}18(x - 3)(x - 2) = (x - 1)(x - 2)(x - 3)(x - 4){/tex}
{tex}\Rightarrow{/tex} 18 = (x - 1)(x - 4)
{tex}\Rightarrow{/tex} 18 = x2 - 4x - 1x + 4
{tex}\Rightarrow{/tex} x2 - 5x + 4 - 18 = 0
{tex}\Rightarrow{/tex} x2 - 5x - 14 = 0
In order to factorize x2 - 5x - 14, we have to find two numbers 'a' and 'b' such that.
a + b = - 5 and ab = -14
Clearly, -7 + 2 = -5 and (-7)(2) = -14
{tex}\therefore{/tex} a = -7 and b = 2
Now,
x2 - 5x - 14 = 0
{tex}\Rightarrow{/tex} x2 - 7x + 2x - 14 = 0
{tex}\Rightarrow{/tex} x(x - 7) + 2(x - 7) = 0
{tex}\Rightarrow{/tex} (x - 7)(x + 2) = 0
{tex}\Rightarrow{/tex} x - 7 = 0 or x + 2 = 0
{tex}\Rightarrow{/tex} x = 7 or x = -2

  • 1 answers

Sia ? 6 years, 6 months ago

Graph of {tex}4x - 5y + 16 = 0{/tex}
{tex}4x - 5y + 16 = 0{/tex} {tex}\Rightarrow{/tex} {tex}5y = 4x + 16{/tex}
{tex}\Rightarrow \quad y = \frac { ( 4 x + 16 ) } { 5 }{/tex}.......(i)
Table for {tex}4x - 5y +16 = 0.{/tex}

x -4 1 6
y 0 4 8

Now, plot the points A (-4, 0), B(1, 4) and C(6, 8) on the graph paper.
Join AB and BC to get the graph line ABC. Extend it on both ways.
Thus, the line ABC is the graph of 4x - 5y +16 = 0.

Graph of {tex}2x + y - 6 =0{/tex}
{tex}2x + y - 6 = 0{/tex} {tex}\Rightarrow{/tex} {tex}y = (6 - 2x){/tex}. ... (ii)
Table for {tex}2x + y - 6 = 0.{/tex}

x 0 2 3
y 6 2 0

On the same graph paper as above, plot the points P(0,6), Q(2,2) and R(3,0).
Join PQ and QR to get the graph line PQR. Extend it on both ways.
Thus, the line PQR is the graph of 2x + y - 6 = 0.

The two graph lines ABC and PQR intersect at the point B(1,4). x = 1 and y = 4 is the solution of the given system of equations.
These lines form {tex}\triangle{/tex}BAR with the x-axis, whose vertices are B(l, 4), A (-4, 0) and R(3, 0).
The two graph lines ABC and PQR intersect at the point B(1, 4).
{tex}\therefore{/tex}  x = 1 and y = 4 is the solution of the given system of equations.
These lines form {tex}\triangle{/tex}BAR with the x-axis, whose vertices are B(1, 4), A (-4, 0) and R(3, 0).

  • 1 answers

Sia ? 6 years, 4 months ago

LHS {tex}=\frac{\tan A}{\left(1+\tan ^{2} A\right)^{2}}+\frac{\cot A}{\left(1+\cot ^{2} A\right)^{2}}{/tex}
{tex}=\frac{\tan A}{\left(\sec ^{2} A\right)^{2}}+\frac{\cot A}{\left(\ cosec ^{2} A\right)^{2}}{/tex}
{tex}=\frac{\sin A}{\cos A}{/tex} . cos4 A {tex}+\frac{\cos A}{\sin A}{/tex} . sin4 A
= sin A cos3 A + cos A sin3 A
= cos A sin A (cos2 A + sin2 A)
= sin A cos A = RHS
 

  • 1 answers

Sia ? 6 years, 6 months ago

Join OP, Suppose OP meets the circle at Q. Join AQ.

We have,
OP = diameter
{tex} \Rightarrow{/tex} OQ + PQ = diameter
{tex} \Rightarrow{/tex} PQ = diameter - radius
{tex} \Rightarrow{/tex} PQ = radius.
Therefore, OQ = PQ = radius.
Thus, OP is the hypotenuse of right triangle OAP and Q is the mid-point of OP.
Now,
In {tex} \triangle{/tex}OPA,
{tex} \sin \angle OPA = \frac{{OA}}{{OP}} = \frac{r}{{2r}}{/tex} [Give OP is the diameter of the circle]
{tex} \Rightarrow \sin \angle OPA = \frac{1}{2} = \sin 30^\circ{/tex}
{tex} \Rightarrow \angle OPA = 30^\circ{/tex}
Similarly, it can be proved that {tex} \angle OPB = 30^\circ {/tex}.
Now, {tex} \angle APB = \angle OPA + \angle OPB{/tex} {tex}= 30^\circ + 30^\circ = 60^\circ{/tex}
In {tex} \triangle{/tex}PAB,
PA = PB [Lengths of tangents drawn from an external point to a circle are equal]
{tex}\Rightarrow \angle PAB = \angle PBA{/tex} ....(i) [Equal sides have equal angles opposite to them]
{tex} \angle PAB + \angle PBA + \angle APB = 180^\circ {/tex} [Angle sum property]
{tex}\Rightarrow \angle PAB + \angle PAB = 180^\circ - 60^\circ = 120^\circ {/tex} [Using (i)]
{tex} \Rightarrow 2\angle PAB = 120^\circ{/tex}
{tex} \Rightarrow \angle PAB = 60^\circ{/tex} ....(ii)
From (i) and (ii)
{tex} \angle PAB = \angle PBA = \angle APB = 60^\circ {/tex}
{tex}{/tex} Therefore, {tex} \triangle{/tex}PAB is an equilateral triangle.

  • 5 answers

Bidhishree Sahu 7 years, 2 months ago

1 obviously

Subhranshu Mallick 7 years, 2 months ago

1 LOL

Subhadeep Kundu 7 years, 2 months ago

1

Sharlin Thomas 7 years, 2 months ago

Ncert mai clearly diya hai dude!

Shalu Gupta 7 years, 2 months ago

1
  • 1 answers

Sia ? 6 years, 6 months ago

We have to prove that,{tex}\frac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \frac{1}{{\sec \theta - \tan \theta }}{/tex} using identity {tex}sec^2\theta=1+tan^2\theta{/tex}

LHS = {tex}\frac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} {/tex}{tex} = \frac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }}{/tex} [  dividing the numerator and denominator by {tex}\cos{\theta}{/tex}.]

{tex} = \frac{{(\tan \theta + \sec \theta)-1 }}{{(\tan \theta - \sec \theta )+1}}{/tex}{tex}=\frac{\{{(\tan\theta+\sec\theta)-1\}}(tan\theta-\sec\theta)}{\{{(\tan\theta-\sec\theta)+1\}}(\tan\theta-\sec\theta)}{/tex} [ Multiplying and dividing by {tex}(\tan{\theta}-\sec{\theta}){/tex}]

{tex}=\frac{{(\tan^2\theta-\sec^2\theta)-}(tan\theta-\sec\theta)}{\{{(\tan\theta-\sec\theta)+1\}}(\tan\theta-\sec\theta)}{/tex}    [{tex}\because (a-b)(a+b)=a^2-b^2{/tex}]

{tex} = \frac{{-1-\tan \theta + \sec \theta }}{{(\tan \theta - \sec \theta+1)(\tan{\theta}-\sec{\theta}) }}{/tex}[{tex}\because \tan^2\theta-\sec^2\theta=-1{/tex}]

{tex}=\frac{-(\tan\theta-\sec\theta+1)}{(\tan\theta-\sec\theta+1)(\tan\theta-\sec\theta)}{/tex}{tex}=\frac{-1}{\tan{\theta}-\sec{\theta}}{/tex}

{tex} = \frac{1}{{\sec \theta - \tan \theta }}{/tex}=RHS

Hence Proved.

  • 1 answers

Shobhit Jaryal 7 years, 2 months ago

Tangent is line draw outside of circle and get in contact with circle on a certain one point... Circumferance of circle is 2πr
  • 1 answers

Sia ? 6 years, 6 months ago

Let the radius of the base and the height of the solid cylinder be r m and h m respectively.
Then r + h = 37 . . . (1) . . .[Given]
Total surface area of the solid cylinder = 1628 m2
⇒ 2{tex}\pi{/tex}r(h + r) = 1628
⇒ 2{tex}\pi{/tex}r(37) = 1628 . . . [Using (1)]
⇒ 2 × {tex}22\over7{/tex} × r × 37 = 1628
⇒ r = {tex}{{1628}\times7}\over2\times22\times37{/tex}
⇒ r = 7 m
Putting the value of r in (1), we get
7 + h = 37
⇒ h = 37 – 7 = 30 m
∴ Circumference of the base of the solid cylinder = 2{tex}\pi{/tex}r
= 2 ×{tex}22\over7{/tex}× 7 = 44 m
and volume of the cylinder = {tex}\pi{/tex}r2h
={tex}22\over7{/tex}× (7)2 × 30 = 4620 m3

  • 1 answers

Kannu Kranti Yadav 7 years, 2 months ago

What we have to find here
  • 2 answers

Rachit Dwivedi 7 years, 2 months ago

Acccha ....zyada gyan mat baato jitna poocha h utna batao agar pta h to

Rajpara Jay Prakashbhai 5 years, 8 months ago

Itna bhi nahi aaata hamare esh ki kab pragati hogi gawaaar
  • 1 answers

Subhadeep Kundu 7 years, 2 months ago

√b²-4ac/a
  • 1 answers

Kannu Kranti Yadav 7 years, 2 months ago

Roots of polynomial are 2 and -3 . So we get the sum of roots = -1 and product of roots =-6. So polynomial is x²+1x-6.
  • 0 answers
  • 1 answers

Sagar Jogi 7 years, 2 months ago

Let A =B=30 Sin(A+B) =sin(30 +30)=sin60=√3/2
  • 1 answers

Yogita Ingle 7 years, 2 months ago

- 18

  • 3 answers

Shagun Chaudhary 7 years, 2 months ago

Tanget touch at a single point whereas secant touch at two points....

Amit Gupta 7 years, 2 months ago

Tangent touches only one point of the perimeter of cirle (eg football on the ground ) and secant touches two points of the perimeter of circle....

Ak Ak 7 years, 2 months ago

Tangent touch at only one point but secant at two point
  • 2 answers

Aashu Kumar 7 years, 2 months ago

4

Utkarsh Pandey 7 years, 2 months ago

4
  • 2 answers

Aashu Kumar 7 years, 2 months ago

(a+d) +a+(a+d) =24 and(a-d)(a) (a+d) =440

Shalu Gupta 7 years, 2 months ago

(a-d)+a+(a+d) =24 and (a-d)(a)(a+d)=440
  • 4 answers

Aashu Kumar 7 years, 2 months ago

Perpendicular /hypotenuse

Sagar Jogi 7 years, 2 months ago

SinA=tanA.cosA

Harsh Naik 7 years, 2 months ago

P/H

Ananya Pandey 7 years, 2 months ago

Perpendicular/hypotenuse
  • 1 answers

#Abhisht Singh 7 years, 2 months ago

Chapter 1st to chapter 9th
2:3
  • 3 answers

Aashu Kumar 7 years, 2 months ago

2/3

Sagar Jogi 7 years, 2 months ago

It means 2/3

Dheeraj Verma 7 years, 2 months ago

What is the question ? Clarify your question .
  • 2 answers

Aashu Kumar 7 years, 2 months ago

Yes

Kannu Kranti Yadav 7 years, 2 months ago

Let 6√3 be a rational number , so it can be written in the form of a/b where b≠0 and a and b are co prime numbers ......... .......... 6√3=a/b .. now √3 = a/b-6 , as we know that √3 is an irrational number , therefore our assumption is wrong. Hence due to contradiction 6√3 is an irrational number .hence proved .
  • 2 answers

Aashu Kumar 7 years, 2 months ago

Leonhard Euler

Harsh Naik 7 years, 2 months ago

Leonhard Euler

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App