No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Kunal J 7 years, 1 month ago

a = 3 & d = 5

Deepak Kumar 7 years, 1 month ago

A is 10 and d is 5
  • 1 answers

Priyanshu Kumar 7 years, 1 month ago

X axis
  • 7 answers

Linta Abraham 7 years, 1 month ago

1+1=2

Ayush Verma 7 years, 1 month ago

1

Swati Burnwal 7 years, 1 month ago

2

Purva Thote 7 years, 1 month ago

2

Vansh Sehgal 7 years, 1 month ago

2..

Abhiram Appu 7 years, 1 month ago

2

Deepak Kumar 7 years, 1 month ago

Ans 2 hai per mad log ke leye 11
  • 1 answers

Abhiram Appu 7 years, 1 month ago

1
  • 1 answers

Sankalp Awasthi 7 years, 1 month ago

An interger cn be meant....as a number consisting positive n negative.....
  • 1 answers

Kunal J 7 years, 1 month ago

44th term is the first negative term of the given AP
  • 1 answers

Sia ? 6 years, 6 months ago

Let the coordinates of the third vertex be (x, y). Then by centroid formula, coordinates of centroid  of given triangle  are,

{tex}\left( \frac { x - 3 + 0 } { 3 } , \frac { y + 1 - 2 } { 3 } \right) = \left( \frac { x - 3 } { 2 } , \frac { y - 1 } { 3 } \right){/tex}
We have centorid is at origin (0, 0)
{tex}\therefore \frac { x - 3 } { 3 } = 0 \quad \text { and } \frac { y - 1 } { 3 } = 0{/tex}
{tex}\Rightarrow{/tex}x - 3 = 0 {tex}\Rightarrow{/tex}y - 1 = 0
{tex}\Rightarrow{/tex}x = 3{tex}\Rightarrow{/tex}y = 1
Hence, the coordinates of the third vertex are (3, 1).

  • 3 answers

Nav Jyoti 7 years, 1 month ago

1

Karm Modh 7 years, 1 month ago

Dont suck

Rachit Dwivedi 7 years, 1 month ago

HCF-1
  • 0 answers
  • 0 answers
  • 4 answers

Khushi Katyani 7 years, 1 month ago

-0.8

Riya Pal 7 years, 1 month ago

54.08

Arohi . 7 years, 1 month ago

54.08

Hemakumar Vadivelan 7 years, 1 month ago

55.52
  • 1 answers

Sia ? 6 years, 6 months ago

Get NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

  • 2 answers

Deepak Kumar 7 years, 1 month ago

+ ko 4 banado 245 +5=250

Arohi . 7 years, 1 month ago

How???
  • 0 answers
  • 0 answers
  • 1 answers

The Devil Prince 7 years, 1 month ago

WWW.CBSE.NIC.COM???
  • 0 answers
  • 2 answers

Shivangi Agrawal 7 years, 1 month ago

2√2

Feba Roji 7 years, 1 month ago

2√2
  • 4 answers

Shivangi Agrawal 7 years, 1 month ago

Archimedes is the father of mathematics

Anshika Mittal 7 years, 1 month ago

Archimedes

Shashank Thakur 7 years, 1 month ago

Srinivas ramanujan

Aditi Choudhary 7 years, 1 month ago

Archimedes....
  • 6 answers

Shivam Baghel 7 years, 1 month ago

1

Vansh Sehgal 7 years, 1 month ago

0

Dipanshu Kumar 7 years, 1 month ago

0

Dipanshu Kumar 7 years, 1 month ago

1

Chiching Misao 7 years, 1 month ago

0

Aaryan Pundir 5 years, 8 months ago

1
  • 1 answers

Sia ? 6 years, 6 months ago

Graph of the equation {tex}x + 3y = 6{/tex}:
We have, {tex}x + 3y = 6{/tex} {tex} \Rightarrow {/tex} {tex}x = 6 - 3y{/tex}
When y = 1, we have x = 6 - 3 =3
When y = 2, we have x = 6 - 6 = 0
Thus, we have the following table:

x 3 0
y 1 2

Plotting the points {tex}A(3,1)\ and\ B(0,2){/tex} and drawing a line joining them, we get the graph of the equation x + 3y = 6 as shown in Fig.
Graph of the equation {tex}2x - 3y = 12{/tex} :
We have, {tex} 2 x - 3 y = 12 \Rightarrow y = \frac { 2 x - 12 } { 3 }{/tex}
When x=3, we have {tex}y = \frac { 2 \times 3 - 12 } { 3 } = - 2{/tex}

When x=0, we have {tex}y = \frac { 0 - 12 } { 3 } = - 4{/tex}

x 3 0
y -2 -4

Plotting the points {tex}C(3,-2)\ and\ D(0, - 4){/tex} on the same graph paper and drawing a line joining them, we obtain the graph of the equation {tex}2x - 3y = 12{/tex} as shown in Fig.
Clearly, two lines intersect at P(6, 0).
Hence, {tex}x = 6, y = 0{/tex} is the solution of the given system of equations.
Putting x = 6, y = 0 in {tex}a = 4x + 3y{/tex}, we get
a = (4 {tex}\times{/tex} 6) + (3 {tex}\times{/tex} 0) = 24

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App