Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Puja Sahoo 7 years ago
- 7 answers
Posted by Om Sharma 7 years ago
- 4 answers
Rashi Kashyap 7 years ago
Avinash Kumar 7 years ago
Posted by Nikhil Jha 7 years ago
- 1 answers
Posted by Vedika Katta 7 years ago
- 0 answers
Posted by Bajaang Salu 7 years ago
- 2 answers
Neha Jangir 7 years ago
Posted by Abdul Wajid Malik 7 years ago
- 5 answers
Puja Sahoo 7 years ago
Chētnà Pandey✌️ 7 years ago
Posted by Rishi Arora 7 years ago
- 1 answers
Ram Kushwah 7 years ago
{tex}\begin{array}{l}\frac{\sin\;^3A\;+\cos^3A}{\sin A+\cos A}+\;\sin AcosA\\={\textstyle\frac{\textstyle(\sin A\;+\;\cos A)(\sin^2A+\cos^2A-\sin A\cos A)}{\sin{\textstyle A}{\textstyle\;}{\textstyle+}{\textstyle\cos}{\textstyle A}}}\;+\;\sin AcosA\\=\sin^2A+\cos^2A-\sin A\cos A+\;\sin AcosA\\=1\\\end{array}{/tex}
Posted by Shiwansh Singh 7 years ago
- 1 answers
Posted by Shyamani Patel 7 years ago
- 2 answers
Posted by S P 7 years ago
- 2 answers
Posted by Rahul Dhot 6 years, 4 months ago
- 1 answers
Sia ? 6 years, 4 months ago
For sin A,
By using identity {tex}cosec ^ { 2 } A - \cot ^ { 2 } A = 1 \Rightarrow \cos e c ^ { 2 } A = 1 + \cot ^ { 2 } A{/tex}
{tex}\Rightarrow \frac { 1 } { \sin ^ { 2 } A } = 1 + \cot ^ { 2 } A{/tex}
{tex}\Rightarrow \sin A = \frac { 1 } { \sqrt { 1 + \cot ^ { 2 } A } }{/tex}
For secA,
By using identity {tex}\sec ^ { 2 } A - \tan ^ { 2 } A = 1 \Rightarrow \sec ^ { 2 } A = 1 + \tan ^ { 2 } A{/tex}
{tex}\Rightarrow \sec ^ { 2 } A = 1 + \frac { 1 } { \cot ^ { 2 } A } = \frac { \cot ^ { 2 } A + 1 } { \cot ^ { 2 } A } \Rightarrow \sec ^ { 2 } A = \frac { 1 + \cot ^ { 2 } A } { \cot ^ { 2 } A }{/tex}
{tex}\Rightarrow \sec A = \frac { \sqrt { 1 + \cot ^ { 2 } A } } { \cot A }{/tex}
For tanA,
{tex}\tan A = \frac { 1 } { \cot A }{/tex}
Posted by Puja Sahoo 7 years ago
- 3 answers
Sunita Awasthi 7 years ago
Abc . 7 years ago
Posted by Devashish Shah 7 years ago
- 1 answers
Posted by Ñítísh Ãñsh 7 years ago
- 0 answers
Posted by Jhankar Sharma 7 years ago
- 2 answers
Posted by Arun Banna 7 years ago
- 0 answers
Posted by Bhavani Bhava 7 years ago
- 1 answers
Posted by Siddharth Chavan 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Let the usual speed of the plane be x km/hr. Then,
New speed = (x + 400) km/hr.
Time taken to cover 1600 km when the speed is x km/hr {tex} = \frac{{1600}}{x}{/tex} hrs.
Time taken to cover 1600 km when the speed is (x + 400) km/hr {tex} = \frac{{1600}}{{x + 400}}{/tex} hrs.
{tex}\therefore \frac{{1600}}{x} - \frac{{1600}}{{x + 400}} = \frac{{40}}{{60}}{/tex} {tex}\left[ {\because 40{\text{ minutes}} = \frac{{10}}{{60}}hr} \right]{/tex}
{tex} \Rightarrow \frac{{1600(x + 400) - 1600x}}{{x(x + 400)}} = \frac{2}{3}{/tex}
{tex} \Rightarrow \frac{{1600x + 640000 - 1600x}}{{{x^2} + 400x}} = \frac{2}{3}{/tex}
{tex} \Rightarrow \frac{{640000}}{{{x^2} + 400x}} = \frac{2}{3}{/tex}
{tex}\Rightarrow{/tex} 1920000 = 2(x2 + 400x)
{tex} \Rightarrow \frac{{1920000}}{2} = {x^2} + 400x{/tex}
{tex}\Rightarrow{/tex} 960000 = x2 + 400x
{tex}\Rightarrow{/tex} x2 + 400x - 960000 = 0
{tex}\Rightarrow{/tex} x2 + 1200x - 800x - 960000 = 0
{tex}\Rightarrow{/tex} x(x + 1200) - 800(x + 1200) = 0
{tex}\Rightarrow{/tex} (x + 1200)(x - 800) = 0
{tex}\Rightarrow{/tex} x - 800 = 0 [{tex}\because{/tex} Speed can not be negative {tex}\therefore{/tex} x + 1200 {tex}\ne{/tex} 0]
{tex}\Rightarrow{/tex} x = 800
Hence, the usual speed of the plane is 800 km/hr.
Posted by Amit Gupta 7 years ago
- 1 answers
Posted by Satya Singh Veer 7 years ago
- 1 answers
Posted by Sanatombi Urikhimbam 7 years ago
- 1 answers
Posted by Abhay Kumar 7 years ago
- 0 answers
Posted by Neha Jangir 7 years ago
- 2 answers
Asif Ali 7 years ago
Posted by Neha Jangir 7 years ago
- 2 answers
Posted by Goswami Kajal 7 years ago
- 1 answers
Posted by Priya Dhand 7 years ago
- 4 answers
Ram Kushwah 7 years ago
from 1 to 88 the numbers divid\sible by 8 are
8,16,24..............88
total 11 numbers
not divisible by 8 are =88-11=77
hence probability is {tex}\frac{77}{88}{/tex}
Posted by Keithellakpam Dilip 7 years ago
- 4 answers
Ram Kushwah 7 years ago
{tex}\begin{array}{l}CSA\;OF\;FUSTAM\;IS:\\\mathrm\pi(\sqrt{(\mathrm R-\mathrm r)2+\mathrm h^2)})(\mathrm R+\mathrm r)\\=3.14\times(\sqrt{(15-5)^2+}24^2)(15+5)\\=3.14\times(26\times20)=1632.8\;\mathrm{cm}^2\\\\\end{array}{/tex}
Posted by Juhi Sharma 7 years ago
- 1 answers
Yogita Ingle 7 years ago
The angle of elevation will 45 degrees as in the triangle formed by the head of man, end point of shadow and the point where leg touches ground. And the man is perpendicular to the groung so 90 degrees. As per the question heights of man and shadow are equal thus triangle will be isosceles thus answer will be 45 degree.
Posted by Divyanshu Jangid 7 years ago
- 3 answers
Poonam Bais 7 years ago

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Disha Rathore 7 years ago
0Thank You