No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Prashant Mitraov 6 years, 11 months ago

(Xi-a)÷h
  • 0 answers
  • 1 answers

Piyush Gautam 6 years, 11 months ago

0
  • 5 answers

Prashant Mitraov 6 years, 11 months ago

My answer also k=18

Puja Sahoo 6 years, 11 months ago

Samjhe

Puja Sahoo 6 years, 11 months ago

Agar ye consecutive terms of AP hain so( 2k-1)-(k+9)=(2k+7)-(2k-1) inke common difference equal honge

Sushant Thareja 6 years, 11 months ago

Please explain it

Puja Sahoo 6 years, 11 months ago

K=18
  • 6 answers

Shruti Singh 6 years, 11 months ago

Practice karo , and theorem and construction yaad kar lo... Everything will be easy ...

S Sihag Ji 6 years, 11 months ago

Solutions yaad mat kro , basic strong kro solutions ho jayege☺?

Piyush Gautam 6 years, 11 months ago

Do more practice

Piyush Gautam 6 years, 11 months ago

You want need hard work and learn it stongly

Prashant Chaudhary 6 years, 11 months ago

Wo practice Karne se hota hai jitni aachi practice utna aacha Aapke liye???

Raunak _ Pandey ?? 6 years, 11 months ago

Maths me learn nahi karna hota hai ! Understand then it will be beneficial
  • 3 answers

Puja Sahoo 6 years, 11 months ago

Jab ap shant ho or maths karne ka mood ho, depends on yu but prashant ji ka time acha hai

Raunak _ Pandey ?? 6 years, 11 months ago

Early morning or late night when there is complete silence

Prashant Chaudhary 6 years, 11 months ago

From 6 am to 9 am ??? from my point of view ???
  • 3 answers

Chētnà Pandey✌️ 6 years, 11 months ago

Sn= n/2( a+ l) where l= last term

Chētnà Pandey✌️ 6 years, 11 months ago

Sn= n/2 ( 2a + ( n-1)×d)

Chētnà Pandey✌️ 6 years, 11 months ago

An = a + ( n- 1)×d.
  • 2 answers

Abhinash Choudhary 6 years, 11 months ago

a=bq+r

Chētnà Pandey✌️ 6 years, 11 months ago

a= bq + r
  • 2 answers

Gaurav Seth 6 years, 11 months ago

There is a mistake in a question.
I think question is like this

Question:

The sum of first n terms of an AP is given by Sn = 2n² + 3n . Find the sixteenth term of
the AP.


Solution:

Let an be the nth term & Sn be the sum of first n terms.

Given:
Sn = 2n²+3n

an = S(n) - S(n-1)

=2n²+3n -[ 2(n-1)²+3(n-1)]

= 2n²+3n -[2(n²+1-2n)+3n -3]

= 2n²+3n -[2n²+2-4n + 3n -3]

= 2n²+3n -2n²+4n-3n -2+3

= 2n²+2n²+3n -3n +4n -2+3

= 4n +1

an = 4n+1

a16= 4×16 +1= 64+1= 65

Hence, the 16th term of an AP is 65

Puja Sahoo 6 years, 11 months ago

-----> a16 = 20........
  • 1 answers

Sia ? 6 years, 6 months ago

Discriminant of the quadratic equation

  • 6 answers

Prashant Mitraov 6 years, 11 months ago

Mil gaya kya morning me 6:35 par upload kia h

Prabhjeet Singh 6 years, 11 months ago

Please write the full question

Prashant Mitraov 6 years, 11 months ago

Vol.of cone wala

????? ❤️ 6 years, 11 months ago

Bhai tera question Kya h

Puja Sahoo 6 years, 11 months ago

Question kya hai

Prabhjeet Singh 6 years, 11 months ago

Kya Q tha
  • 5 answers

Prashant Mitraov 6 years, 11 months ago

D is negative so no real roots

Neha Narula 6 years, 11 months ago

You should find D first . D=b^2-4ac =(-20)^2-4 (112) =400-448 =(-48) If d<0 there are no real roots.

Puja Sahoo 6 years, 11 months ago

Are yar quadratic formula put karlo answer mil jayega......

Vivek Chaurasiya 6 years, 11 months ago

But how

Puja Sahoo 6 years, 11 months ago

X= 20+ root (-48)/2 and 20 - root(-48)/2
  • 3 answers

Mahtab Alam 6 years, 11 months ago

96%

Prashant Mitraov 6 years, 11 months ago

96℅

Moksh Khandelwal 6 years, 11 months ago

Area increase by 20 percent because diameter-2r
  • 1 answers

Sia ? 6 years, 6 months ago


AB = 3 m, AC = 4 m
In {tex}\triangle{/tex}BAC, by pythagoras theorem
BC2 = AB2 + AC2 
{tex}\Rightarrow{/tex}BC2 = 32 + 42 
{tex}\Rightarrow{/tex}BC2 = 25 
{tex}\Rightarrow{/tex}BC = {tex}\sqrt {25} {/tex} = 5 m
In {tex}\triangle{/tex}AOB and {tex}\triangle{/tex}CAB
{tex}\angle{/tex}ABO = {tex}\angle{/tex}ABC [common]
{tex}\angle{/tex}AOB = {tex}\angle{/tex}BAC [each 90o
Then, {tex}\triangle{/tex}AOB - {tex}\triangle{/tex}CAB [by AA similarity]
{tex}\therefore{/tex} {tex}\frac { A O } { C A } = \frac { O B } { A B } = \frac { A B } { C B }{/tex} [c.p.s.t]
{tex}\Rightarrow{/tex} {tex}\frac { A O } { 4 } = \frac { O B } { 3 } = \frac { 3 } { 5 }{/tex}
Then, AO = {tex}\frac{{4 \times 3}}{5}{/tex} and OB = {tex}\frac{{3 \times 3}}{5}{/tex}
{tex}\Rightarrow{/tex} AO = {tex}\frac{12}{5}{/tex} m and OB = {tex}\frac{9}{5}{/tex} m
{tex}\therefore{/tex}OC = 5 - {tex}\frac{9}{5}{/tex} = {tex}\frac{16}{5}{/tex}m
{tex}\therefore{/tex} Volume of double cone thus generated = volume of first cone + volume of second cone
{tex}= \frac { 1 } { 3 } \pi ( A O ) ^ { 2 } \times B O + \frac { 1 } { 3 } \pi ( A O ) ^ { 2 } \times O C{/tex}
{tex}= \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times \left( \frac { 12 } { 5 } \right) ^ { 2 } \times \frac { 9 } { 5 } + \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times \left( \frac { 12 } { 5 } \right) ^ { 2 } \times \frac { 16 } { 5 }{/tex}
{tex}= \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times \frac { 12 } { 5 } \times \frac { 12 } { 5 } \left[ \frac { 9 } { 5 } + \frac { 16 } { 5 } \right]{/tex}
{tex}= \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times \frac { 12 } { 5 } \times \frac { 12 } { 5 } \times 5{/tex}
={tex}\frac{1056}{35}{/tex} = {tex}30 \frac { 6 } { 35 } \mathrm { m } ^ { 3 }{/tex}.

  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago


We know that the two tangents drawn to a circle from an external point are equal.
{tex}\therefore{/tex} AQ = AR, BP = BQ, CP = CR
{tex}\therefore{/tex} Perimeter of {tex}\triangle{/tex}ABC =  AB + BC + AC
= AB + BP + PC + AC
= AB + BQ + CR + AC [{tex}\because{/tex} BP = BQ, PC = CQ]
= AQ + AR = 2AQ = 2AR = [{tex}\because{/tex} AQ = AR]
= AQ = AR = {tex}\frac 12{/tex}[Perimeter of {tex}\triangle{/tex}ABC]

  • 1 answers

Renuka Mali 6 years, 11 months ago

Prove root 3 separately and root 5 separate
  • 2 answers

Neha Narula 6 years, 11 months ago

Centroid is centre of a triangle where all it medians intersect each other.

????? ❤️ 6 years, 11 months ago

Center of any figure
  • 1 answers

Affu 😊 6 years, 11 months ago

Use the formula area of triangle with vertices
  • 3 answers

Gaurav Seth 6 years, 11 months ago

n =4

Therefore,

3(4) + 2 = 14

Hence the 4th term of an A.P. is 14

Swati Yadav 6 years, 11 months ago

3(4)+2=14

Jaldhari Meena 6 years, 11 months ago

14
  • 1 answers

Renuka Mali 6 years, 11 months ago

Refer exercise 1.3, 2 problem
  • 1 answers

Renuka Mali 6 years, 11 months ago

Refer exercise 8.4 ,5 main 5problem

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App