No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Aradhana Singh 6 years, 11 months ago

Are kya kare define
  • 1 answers

Yaar 6 years, 11 months ago

Is this question is right, richa?
  • 1 answers

Sia ? 6 years, 6 months ago


In {tex}\triangle A B C,{/tex} {tex}\tan 60 ^ { \circ } = \frac { A B } { B C }{/tex} 
{tex}\Rightarrow \quad A B = \sqrt { 3 } B C{/tex}  .....(i)
In {tex}\triangle A B D,{/tex}  
{tex}\tan 30 ^ { \circ } = \frac { A B } { B C + 40 }{/tex} 
{tex}\frac{ 1}{√3}=\frac{AB}{BC+40}=\frac{√3BC}{BC+40}{/tex}
3BC = BC + 40
BC = 20, Hence from (i) we get
AB = 20√3 = 20 {tex}\times{/tex} 1.73 = 34.6 meter

  • 1 answers

Sia ? 6 years, 6 months ago

A graph of p(x) cut y-axis
∴ At y-axis x = 0
∴ p(0) = a(0)2 + b(0) + c

= 0 + 0 + c
= c

{tex}\Rightarrow\ p(0)=c{/tex}
Now

If p(x) cut y-axis in positive direction
∴ p(0) > 0  so that c>0.
Therefore, c is positive

  • 1 answers

Richa Yadav 6 years, 11 months ago

4^n can not be end with igit zero Because 4^n =2^n*2^n if it end with digit zero then its factor be 2^n*5^n.
  • 2 answers

Richa Yadav 6 years, 11 months ago

45 km /hr

Aradhana Singh 6 years, 11 months ago

Answer is X = -45 and X = 40 X cannot be negative because speed of train cannot be negative. x = 40 . Hance , the original speed of the train is 40 km/h.
  • 1 answers

Sia ? 6 years, 6 months ago

Suppose x and y be two cars starting from points A and B respectively.
Let the speed of the car X be x km/hr and that of the car Y be y km/hr.
Case I: When two cars move in the same directions:
Suppose two cars meet at point Q, then,
Distance travelled by car X = {tex}AQ{/tex}
Distance travelled by car Y = {tex}BQ{/tex}
Distance travelled by car X in 8 hours = 8x km.
{tex}AQ = 8x{/tex}
Distance travelled by car Yin 8 hours = 8y km.
{tex}BQ = 8y{/tex}
Clearly {tex}AQ - BQ = AB{/tex}
{tex}8x - 8y = 80{/tex}
{tex}\Rightarrow {/tex} {tex}x - y = 10{/tex} ...(i)
Case II: When two cars move in opposite direction
Suppose two cars meet at point P, then,
Distance travelled by X car X = AP
Distance travelled by Y car Y = BP
we can write it as 1 hour = {tex}\frac{{20}}{{60}}{/tex}hours.
Therefore, Distance travelled by a car Y in {tex}\frac{4}{3}{/tex}hrs = {tex}\frac{4}{3}{/tex}x km.
AP + BP = AB
{tex}\frac{4}{3}x{/tex} km + {tex}\frac{4}{3} y{/tex} km = 80
{tex}\frac{4}{3}{/tex}{tex}(x + y) = 80{/tex}
{tex}( x + y ) = 80{/tex} × {tex}\frac{3}{4}{/tex}
{tex}x + y = 60{/tex} ...(ii)

By solving equations (i) and (ii), we get, {tex}x = 35.{/tex}
By substituting x = 35 in equation (ii), we get
{tex}x + y = 60{/tex}
{tex}35 + y = 60{/tex}
{tex}y = 60 - 35{/tex}
{tex}y = 25.{/tex}
Hence, speed of car X {tex}= 35\ km/hr.{/tex}
Speed of car Y ={tex} 25\ km/hr.{/tex}

  • 2 answers

Sunil Kumar 6 years, 11 months ago

Distance formula - √(x2 - x1)+(y2 - y1)

Chētnà Pandey✌️ 6 years, 11 months ago

Root mein (x2 - X1) ka whole square + (Y2 - Y1) ka whole square
  • 2 answers

Chirag Saini 6 years, 11 months ago

Perimeter is the meaurement of length of boundary of a 2d figure

Yogita Ingle 6 years, 11 months ago

Perimeter means distance around a figure or curve. We can only measure perimeter of a closed figure/2 dimensional shape or curve as movement around a closed figure or curve is possible.

Perimeter of a square = sum of all sides = 4 x side

Perimeter of Rectangle = L + L + B + B

  • 1 answers

Puja Sahoo 6 years, 11 months ago

Same type of question is present in ncert please check it.......
  • 0 answers
  • 1 answers

S.P Singh 6 years, 11 months ago

L+H(N/2-cf/f)
  • 0 answers
  • 2 answers

Puja Sahoo 6 years, 11 months ago

Yar yogita ye answer to google main tha kya tumne copy, paste kiya hai ise

Yogita Ingle 6 years, 11 months ago

Smallest angle = 120degree

Common difference = 5

A P is 120, 125, 130,……..

The sum of interior angles of a polygon =  (n - 2)180

Hence Sum of n terms of an A P = (n - 2)180

n/2 {2.120+(n-1)5} = 180(n-2)

5n- 125n + 720 = 0

n2 -25n + 144 = 0

n = 9 or 16

Hence number of sides can be 9 or 16.

  • 0 answers
  • 2 answers

Ram Kushwah 6 years, 11 months ago

Let son age =x

So father age=x​​​​​​2

Before one year

x​​​​​​2​​​​​-1=8*(x-1)

x2-8x+7=0

(x-7)(x-1)=0 , X=7 or 1

son 7 yr father 49 yr

 

 

 

Maneet Singh 6 years, 11 months ago

Hello, Maneet Singh this side. Well I teach Maths and science to 10th and maths and economics to 11th. In case if any doubts you can ask from me or you can also share your no. So that i can share most important questions and can clear your dounts. Thanks and Regards MANEET SINGH
  • 1 answers

Yogita Ingle 6 years, 11 months ago

{tex}\;\frac\theta{360\;}\times{/tex}2 πr = 44
Putting r = 42cm, we get= 60°
Now, Area of minor segmen t= Area of minor sector-Area of ∆
Since = 60°, so the triangle formed will be an equilateral ∆
Area of minor segment = Area of minor sector-Area of equilateral ∆
i.e. Area of minor segment = {tex}\;\frac\theta{360\;}\times\mathrm{πr}^2\;-\;\frac{\sqrt3}4\mathrm a^{{}^2}{/tex}

  • 1 answers

Sudhanshu Singh 6 years, 11 months ago

120,180,240 til120 nd 186 240 No we will take HCF of120 180 180=120x1+60 120=60x2 + 0 Hcf of 180 and 120=60 Now we will take hcf of 60 and 240 240=60x4+0 HCF OF 240 AND 60 IS 60 Therefore greatest capacity of such fun will 60 litres
  • 1 answers

Chētnà Pandey✌️ 6 years, 11 months ago

D = b square - 4ac= (-2) square - 4×1×4= 4-16=-12 so no real roots are possible here as D is less than 0
  • 1 answers

Sia ? 6 years, 6 months ago

(-4) + (-1) + 2 + 5 + ---- + x = 437.
Now,
-1 - (-4) = -1 + 4 = 3
2 - (-1) = 2 + 1 = 3
5 - 2 = 3
Thus, this forms an A.P. with a = -4, d = 3,l = x
Let their be n terms in this A.P.
Then,
Sn = {tex}\frac { n } { 2 } [ 2 a + ( n - 1 ) d ] {/tex}
{tex}\Rightarrow 437 = \frac { n } { 2 } [ 2 \times ( - 4 ) + ( n - 1 ) \times 3 ]{/tex}
{tex}\Rightarrow{/tex} 874 = n[-8 + 3n - 3]
{tex}\Rightarrow{/tex}874 = n[3n - 11]
{tex}\Rightarrow{/tex}874 = 3n2 - 11n
{tex}\Rightarrow{/tex}3n2 - 11n - 874 = 0
{tex}\Rightarrow{/tex}3n2 - 57n + 46n - 874 = 0
{tex}\Rightarrow{/tex}3n(n - 19) + 46(n - 19) = 0
{tex}\Rightarrow{/tex}3n + 46 = 0 or n = 19
{tex}\Rightarrow n = - \frac { 46 } { 3 }{/tex} or n = 19
Numbers of terms cannot be negative or fraction.
{tex}\Rightarrow{/tex} n = 19
Now, Sn = {tex}\frac { n } { 2 } [ a + l ]{/tex}
{tex}\Rightarrow 437 = \frac { 19 } { 2 } [ - 4 + x ]{/tex}
{tex}\Rightarrow - 4 + x = \frac { 437 \times 2 } { 19 }{/tex}
{tex}\Rightarrow - 4 + x = 46{/tex}
{tex}\Rightarrow x = 50{/tex}

  • 1 answers

Gaurav Seth 6 years, 11 months ago

Secants And Tangents

A secant is a line that intersects the circle in two different points and a tangent is a line that intersects the circle in exactly one point, called the point of tangency. Secant and tangent theorems can be used to find congruency, similarity, and special length relationships between the two. One important theorem about secants and tangents states that the measure of an angle formed by two secants, a secant and a tangent, or two tangents intersecting in the interior of a circle is equal to one-half the difference of the measures of the intercepted arcs; that is, .

  • 1 answers

Sia ? 6 years, 6 months ago

Let ABC be the right triangle right angled at A
whose sides AB and AC measure 3 cm
and 4 cm respectively,
{tex}\therefore \text { hypotenuse } \mathrm { BC } = \sqrt { 3 ^ { 2 } + 4 ^ { 2 } } = 5 \mathrm { cm }{/tex}

Let AO (A'O) is the radius of the common base of the double cone formed by revolving the triangle around BC.
Now, the area of {tex}\triangle A B C = \frac { 1 } { 2 } \times 4 \times 3 = \frac { 1 } { 2 } \times B C \times A O{/tex}
{tex}\Rightarrow 6 = A 0 \times \frac { 5 } { 2 } \Rightarrow A O = \frac { 12 } { 5 } = 2.4 \mathrm { cm }{/tex}
Now, the volume of the double cone
{tex}= \frac { 1 } { 3 } \times \pi \times \mathrm { AO } ^ { 2 } \times \mathrm { BO } + \frac { 1 } { 3 } \times \pi \times \mathrm { A } \mathrm { O } ^ { 2 } \times \mathrm { CO }{/tex}
{tex}= \frac { 1 } { 3 } \pi \times A O ^ { 2 } \times ( B O + C O ){/tex}
{tex}= \frac { 1 } { 3 } \times \pi \times \mathrm { AO } ^ { 2 } \times \mathrm { BC } [ \because \mathrm { BO } + \mathrm { CO } = \mathrm { BC } ]{/tex}
{tex}= \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times 2.4 \times 2.4 \times 5 = 30.17 \mathrm { cm } ^ { 3 }{/tex}
The surface area of the double cone = {tex}\pi \times A O \times A B + \pi \times A O \times A C{/tex}
{tex}= \pi \times A O [ A B + A C ]{/tex}
{tex}= \frac { 22 } { 7 } \times 2.4 \times ( 3 + 4 ) = 22 \times 2.4 = 52.8 \mathrm { cm } ^ { 2 }{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App