No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Gaurav Seth 6 years, 11 months ago

Given , 

{tex}{\frac{2\sqrt{45}+3\sqrt{20}}{2\sqrt{5}}} \\\\={\frac{2\sqrt{3\times3\times5}+3\sqrt{2\times2\times5}}{2\sqrt{5}}}\\\\={\frac{2.3\sqrt{5}+3.2\sqrt{5}}{2\sqrt{5}}}\\\\={\frac{12\sqrt{5}}{2\sqrt{5}}}=6{/tex}

Here you can see after simplifying we get 6 , according to definition of rational number [ a number , is in the form of P/Q, Q≠ 0 and P , Q ∈ I ] given number is rational number .

  • 7 answers

Riya ? 6 years, 11 months ago

No akarsh , its root 2.?

Akarsh Singh 6 years, 11 months ago

(x+1)(1/2x+3) hai equation ? Agr haan to x=. -1and -6.

Riya ? 6 years, 11 months ago

hllw Honey , I solve it but my answer is not correct, according to me its follow the quadratic equation.?

Riya ? 6 years, 11 months ago

Aashu (x+1)(\/2x+1) is not equal to zero dude.?

. . 6 years, 11 months ago

It is not an equation.

@ Aashu 6 years, 11 months ago

Hii

@ Aashu 6 years, 11 months ago

The value of x are. -1 & -3 / root 2
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference
pth term = a +(p - 1)d = q(given)-----(1)
qth term = a +(q - 1) d = p(given)-----(2)
subtracting (2) from (1)
(p-q)d=q-p
(p-q)d=-(p-q)
{tex}\therefore{/tex} d = -1
putting d=-1 in (i)
a - (p - 1) = q
{tex}\therefore{/tex} a=p+q-1
{tex}\therefore{/tex} (p + q)th term = a + (p + q - 1)d
= (p + q - 1) - (p + q - 1) = 0

  • 1 answers

Jasline S.? 6 years, 11 months ago

Tell me
  • 2 answers

Akarsh Singh 6 years, 11 months ago

A sector is the part of a circle enclosed by two radii of a circle and their intercepted arc. The segment of a circle is the region bounded by a chord and the arc subtended by the chord.

. . 6 years, 11 months ago

Sector is a part of circle made of a triangle and a segment eg-piece of pizza and segment is a part formed after triangle is removed from a sector.
  • 3 answers

. . 6 years, 11 months ago

It is from quadratic equation .first find the part of tank filled in 1 hr by 1st pipe 2nd pipe. and with together and then equate the equation

Anushka Jugran ? 6 years, 11 months ago

15 and 12

. . 6 years, 11 months ago

12 and 15 hrs
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}A = \frac{{3\sqrt 3 }}{2}{a^2}{/tex}

  • 2 answers

. . 6 years, 11 months ago

Sorry sum=273

. . 6 years, 11 months ago

D=7/3 and sum=286
  • 5 answers

Riya ? 6 years, 11 months ago

245 is the answer of your question.

Anwaya Kumar Nayak 6 years, 11 months ago

Who are u sourav i mean frm which state

Sourav Kumar 6 years, 11 months ago

245

. . 6 years, 11 months ago

245

| | | {R J } .....! ! !: ; 6 years, 11 months ago

245
  • 0 answers
  • 2 answers

Riya ? 6 years, 11 months ago

Yes answer is 60°.

Augustya Singh 6 years, 11 months ago

60 degree
  • 5 answers

Riya ? 6 years, 11 months ago

3median =mode + 2mean.

Nakul Sharma 6 years, 11 months ago

Mode = 3Median-2Mean

K Pragati Nargis 6 years, 11 months ago

Mode=3Median-2Mean

@ Aashu 6 years, 11 months ago

3 median is equal to Mode plus 2 mean..

Puja Sahoo? 6 years, 11 months ago

3 median= mode + 2 mean.
  • 3 answers

Nakul Sharma 6 years, 11 months ago

936

Gaurav Seth 6 years, 11 months ago

nth term of an A.P whose starting term is "a" and common difference is "d"
is an = a+(n-1)d

1st term = a   3rd term =a+2d  17th term = a+16d

According to question 

a+a+2d+a+16d=216

3a+18d=216

3(a+6d) = 216

a+6d= 216/3

a+6d= 72

Sum of "n" terms in an AP = n(2a+(n-1)d)/2

Sum of thirteen terms = 13(2a+12d)/2

                                   =13(a+6d) = 13*72 = 936

Puja Sahoo? 6 years, 11 months ago

936
  • 2 answers

?Apna Time ???? Zala 6 years, 11 months ago

ya its cos square A

Tanya Zanzad 6 years, 11 months ago

Cos square A
  • 1 answers

Sia ? 6 years, 6 months ago

The given system of equations may be written as
{tex}9x -10y + 12 = 0{/tex} ...(i)
{tex}2x + 3y - 13 = 0{/tex}.... (ii)
From (ii), we get {tex} y = \frac { 13 - 2 x } { 3 }{/tex}
Substituting {tex} y = \frac { 13 - 2 x } { 3 }{/tex} in (i), we get
{tex} 9 x - \frac { 10 ( 13 - 2 x ) } { 3 } + 12 = 0{/tex}
{tex} \Rightarrow{/tex} {tex}27x - 10(13 - 2x) + 36 = 0{/tex}
{tex} \Rightarrow{/tex} {tex}27x -130 + 20x + 36 = 0{/tex}
{tex} \Rightarrow{/tex} {tex}47x - 94 = 0{/tex}

{tex} \Rightarrow{/tex} {tex}47x = 94{/tex}

{tex} \Rightarrow x = \frac { 94 } { 47 } = 2{/tex}
Substituting {tex}x = 2{/tex} in (i), we get
{tex} \times{/tex} 2 - 10y + 12 = 0 
{tex} \Rightarrow 10 y = 30 {/tex}

{tex}\Rightarrow y = \frac { 30 } { 10 } = 3{/tex}
Hence, x = 2 and y = 3 is the required solution.

  • 2 answers

?Apna Time ???? Zala 6 years, 11 months ago

1-2b/b=x

Shubham Malik 6 years, 11 months ago

x=-a and x=-b
  • 1 answers

Sia ? 6 years, 6 months ago

Given,
AB is the diameter of the circle
{tex}\angle C O B = \theta{/tex}
According to question
Area of minor segment cut off by AC = 2 {tex}\times{/tex} Area of sector BOC
{tex}\Rightarrow \quad \frac { \angle A O C } { 360 ^ { \circ } } \times \pi r ^ { 2 } - \frac { 1 } { 2 } r ^ { 2 } \sin \angle A O C = 2 \times \frac { \theta } { 360 ^ { \circ } } \times \pi r ^ { 2 }{/tex}
{tex}\Rightarrow \quad \frac { 180 - \theta } { 360 ^ { \circ } } \times \pi r ^ { 2 } - \frac { 1 } { 2 } r ^ { 2 } \sin ( 180 - \theta ) = 2 \times \frac { \theta } { 360 ^ { \circ } } \pi r ^ { 2 }{/tex}
{tex}\Rightarrow \quad \frac { 180 - \theta } { 360 ^ { \circ } } \times \pi r ^ { 2 } - 2 \times \frac { \theta } { 360 ^ { \circ } } \pi r ^ { 2 } = \frac { 1 } { 2 } r ^ { 2 } \sin \theta{/tex}
{tex}\Rightarrow \quad \pi r ^ { 2 } \left[ \frac { 180 - \theta } { 360 ^ { \circ } } - \frac { 2 \theta } { 360 ^ { \circ } } \right] = \frac { 1 } { 2 } r ^ { 2 } \sin \theta{/tex}
{tex}\Rightarrow \quad \pi r ^ { 2 } \left[ \frac { 180 - \theta - 2 \theta } { 360 ^ { \circ } } \right] = \frac { 1 } { 2 } r ^ { 2 } \sin \theta{/tex}
{tex}\Rightarrow \quad \pi \left[ \frac { 180 - 3 \theta } { 360 ^ { \circ } } \right] = \frac { 1 } { 2 } \sin \theta{/tex} [Cancel r2 from both side]
{tex}\Rightarrow \quad \pi \left[ \frac { 180 } { 360 ^ { \circ } } - \frac { 3 \theta } { 360 ^ { \circ } } \right] = \frac { 1 } { 2 } \times 2 \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 }{/tex} [We know that {tex}\sin 2 \theta = 2 \sin \theta \cos \theta{/tex}]
{tex}\Rightarrow \quad \pi \left[ \frac { 1 } { 2 } - \frac { \theta } { 120 ^ { \circ } } \right] = \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 }{/tex} Hence Proved

  • 5 answers

Vidhi Lalwani? 6 years, 11 months ago

Converse*

Vidhi Lalwani? 6 years, 11 months ago

Its bpt and converse and area theorem and Pythagoras and its conclverse

Simran Raj 6 years, 11 months ago

There are four most important theorem that i want to knoe

Anushka Jugran ? 6 years, 11 months ago

Ya, lavanya is ryt

Chetanya Rao 6 years, 11 months ago

All theorams are important
  • 1 answers

Ashu Singh Sisodiya 6 years, 11 months ago

When the power is the it is qadratic eqation .
  • 1 answers

Rishi Shukla 6 years, 11 months ago

Frastum ka h
  • 1 answers

Sia ? 6 years, 4 months ago

According to the question,

L.H.S. = {tex}\frac { \sec \theta + \tan \theta - 1 } { \tan \theta - \sec \theta + 1 }{/tex}
{tex}= \frac { ( \sec \theta + \tan \theta ) - \left( \sec ^ { 2 } \theta - \tan ^ { 2 } \theta \right) } { ( \tan \theta - \sec \theta + 1 ) }{/tex} [{tex}\because{/tex} sec2{tex}\theta{/tex} - tan2{tex}\theta{/tex} = 1]
{tex}= \frac { ( \sec \theta + \tan \theta ) [ 1 - ( \sec \theta - \tan \theta ) ] } { ( \tan \theta - \sec \theta + 1 ) }{/tex}
{tex}= \frac { ( \sec \theta + \tan \theta ) ( \tan \theta - \sec \theta + 1 ) } { ( \tan \theta - \sec \theta + 1 ) } = ( \sec \theta + \tan \theta ){/tex}
{tex}= \left( \frac { 1 } { \cos \theta } + \frac { \sin \theta } { \cos \theta } \right) = \frac { ( 1 + \sin \theta ) } { \cos \theta } = \frac { ( 1 + \sin \theta ) } { \cos \theta } \times \frac { ( 1 - \sin \theta ) } { ( 1 - \sin \theta ) }{/tex}
{tex}= \frac { \left( 1 - \sin ^ { 2 } \theta \right) } { \cos \theta ( 1 - \sin \theta ) } = \frac { \cos ^ { 2 } \theta } { \cos \theta ( 1 - \sin \theta ) } = \frac { \cos \theta } { ( 1 - \sin \theta ) }{/tex} = R.H.S.
{tex}\therefore{/tex} {tex}\frac { \sec \theta + \tan \theta - 1 } { \tan \theta - \sec \theta + 1 } = \frac { \cos \theta } { ( 1 - \sin \theta ) }{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago


Here, a + b + c = 60, c = 25
a + b = 6 0 - c
a + b = 6 0 - 2 5 = 35
Using Pythagoras theorem|
{tex}a ^ { 2 } + b ^ { 2 } = 625{/tex} 
Using identity {tex}( a + b ) ^ { 2 } = a ^ { 2 } + b ^ { 2 } + 2 a b{/tex} 
{tex}35 ^ { 2 } = 625 + 2 a b{/tex} 
1225 - 625 = 2ab
or, ab = 300
Hence, Area of {tex}\triangle A B C = \frac { 1 } { 2 } a b = 150 \mathrm { cm } ^ { 2 }{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

By the question,Water is flowing at the rate of 15 km/hr through a cylindrical pipe of diameter 14 cm into a cuboidal pond which is 50 m long and 44 m wide

Speed of water flowing through the pipe

{tex}= 15 \mathrm { km } / \mathrm { hr } = 15000 \mathrm { m } / \mathrm { hr }{/tex}

Volume of water flowing in 1 hr

{tex}= \pi R ^ { 2 } H{/tex}

{tex}= \frac { 22 } { 7 } \times \frac { 7 } { 100 } \times \frac { 7 } { 100 } \times 15000 \mathrm { m } ^ { 3 }{/tex}

{tex}= 231 \mathrm { m } ^ { 3 }{/tex}

Volume of water in the tank when the depth is 21 cm

{tex}= l b h = 50 \times 44 \times \frac { 21 } { 100 } \mathrm { m } ^ { 3 }{/tex}

{tex}= 462 \mathrm { m } ^ { 3 }{/tex}

{tex}\therefore{/tex} Time taken to fill {tex}462 \mathrm { m } ^ { 3 }{/tex}

{tex}= \frac { 462 } { 231 } = 2 \mathrm { hrs }{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App