No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 3 answers

Mohit Kashyap 6 years, 11 months ago

158

Saif Khan 6 years, 11 months ago

Ap 253,248,243 A is equal to 253 d is equal to 5

Puja Sahoo? 6 years, 11 months ago

158......
  • 1 answers

Puja Sahoo? 6 years, 11 months ago

2475.....
  • 3 answers

Shubhendra Singh ? 6 years, 11 months ago

a square + b square + 2 ab

Augustya Singh 6 years, 11 months ago

a square +b square +ab square

Abcd 1234 6 years, 11 months ago

ab2

  • 3 answers

Sanskaar Kushwaha 6 years, 11 months ago

NCERT is the best to study from it. But if you want test yourself by sample papers, Maths U-like will work for you.??

Anushka Jugran ? 6 years, 11 months ago

Ncert is very very important and the first priority but if u have to score good then u need to go through extra book also.

Abcd 1234 6 years, 11 months ago

we have to prefer other books too
  • 7 answers

Shriya ?? 6 years, 11 months ago

after how much time

Neeraj 17_ 6 years, 11 months ago

Our official language

Shriya ?? 6 years, 11 months ago

subject

Shriya ?? 6 years, 11 months ago

ok thanks puja i forgot that this app also have solutions

Neeraj 17_ 6 years, 11 months ago

Thik

Neeraj 17_ 6 years, 11 months ago

Or

Bhavya Choubey 6 years, 11 months ago

143 cm
  • 2 answers

Varun Punia 6 years, 11 months ago

Let tens digit number be x and ones digit number be y ATQ x=3y. .........(1) And 10x+y-54=10y+x. ..........(2) Simplifying eq... 2 We get , X-Y =6. ...........(3) Substituiting ep.... 1 in eq..... 3 We get, 3y-y=6 2y=6 y=3 So, x=3*y =3*3 =9 So the two digit no. is 93......

Ram Kushwah 6 years, 11 months ago

Let the unit digit =x then 10th digit=3x (given)

number =3xx10+x=31x----------------(1)

if digitd are reversed then 

number=10x+3x=13x--------------(2)

as per given 

31x-54=13x

18x=54. x=3

so number is 93

  • 2 answers

Gujjar Gujjar 6 years, 11 months ago

Wi and technology is the woop of all gaut in shok to make it easier to use it to be a good thing to use and technology in shok where the internet has become more popular than ever in shok where you have

Anshika Pal???? 6 years, 11 months ago

What is this??
  • 2 answers

Vanshika Singh 6 years, 11 months ago

It should be 100...bcuz d=10...so a+9d=10+90=100...hope this is ryt

Anshika Pal???? 6 years, 11 months ago

200
  • 2 answers

Durga Appa 6 years, 10 months ago

How

Augustya Singh 6 years, 11 months ago

Common difference = 1
  • 0 answers
  • 2 answers

Ujjwal Pratap Singh 6 years, 11 months ago

Given that points are collinear so triangle formed by these poinys have there area as 0 Apply area of triangle and calculate k by simplification

Gagan Mehta 6 years, 11 months ago

K=4
  • 1 answers

Sia ? 6 years, 6 months ago

Given: The diagonals of a quadrilateral ABCD intersect each other at the point O such that {tex}\frac{{AO}}{{BO}} = \frac{{CO}}{{DO}}{/tex}
To prove: ABCD is trapezium.
Construction: Through O draw a line OE||BA intersecting AD at E.
Proof: In {tex}\triangle DBA{/tex}{tex}\because OE||BA{/tex}
 
{tex}\therefore \frac{{DO}}{{BO}} = \frac{{DE}}{{AE}} \Rightarrow \frac{{CO}}{{AO}} = \frac{{DE}}{{AE}}{/tex}
{tex}\because \frac{{AO}}{{BO}} = \frac{{CO}}{{DO}}\,[Given]{/tex}
{tex}\Rightarrow \frac{{DO}}{{BO}} = \frac{{CO}}{{AO}} \Rightarrow \frac{{AO}}{{CO}} = \frac{{AE}}{{DE}}{/tex}.........[Taking reciprocals]
{tex}\therefore {/tex}In {tex}\triangle ADC{/tex}
OE {tex}\parallel{/tex} CD ...........[By converse basic proportionality theorem]
But OE {tex}\parallel{/tex} BA
BA {tex}\parallel{/tex} CD........[By construction]
The quadrilateral ABCD is a Trapezium.

  • 3 answers

Augustya Singh 6 years, 11 months ago

K < 10/3

Ujjwal Pratap Singh 6 years, 11 months ago

If D= b^2-4ac is negative then it have no real root D<0 b^2-4ac<0 (9k)^2-4(9)(25)<0 sovle this ilinear equation. ilinear equation is not in our syllabus

Anshika Pal???? 6 years, 11 months ago

10/3
  • 1 answers

Sia ? 6 years, 6 months ago

We have,
{tex}\mathrm { LHS } = \frac { \tan A } { 1 - \cot A } + \frac { \cot A } { 1 - \tan A }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan A } { 1 - \frac { 1 } { \tan A } } + \frac { \frac { 1 } { \tan A } } { 1 - \tan A }{/tex}
{tex}\Rightarrow \quad \text { LHS } = \frac { \tan A } { \frac { \tan A -1 } { \tan A } } + \frac { 1 } { \tan A ( 1 - \tan A ) }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A } { \tan A - 1 } + \frac { 1 } { \tan A ( 1 - \tan A ) }{/tex}
{tex}\Rightarrow \quad \text { LHS } = \frac { \tan ^ { 2 } A } { \tan A - 1 } - \frac { 1 } { \tan A ( \tan A - 1 ) }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 3 } A - 1 } { \tan A ( \tan A - 1 ) }{/tex} [Taking LCM]
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { ( \tan A - 1 ) \left( \tan ^ { 2 } A + \tan A + 1 \right) } { \tan A ( \tan A - 1 ) }{/tex} [{tex}\because{/tex} a3 - b3 = ( a - b )(a2 + ab + b2)]
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A + \tan A + 1 } { \tan A }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A } { \tan A } + \frac { \tan A } { \tan A } + \frac { 1 } { \tan A }{/tex}
{tex}\Rightarrow{/tex} LHS = tanA + 1 + cotA = RHS [ since (1/tanA) =cotA ]

  • 3 answers

Tanya Zanzad 6 years, 11 months ago

πr+d

Priyanka S 6 years, 11 months ago

You can also use or and solve for perimeter of semi-circle

Rahul Raj 6 years, 11 months ago

πr+2r use it and calculate
  • 3 answers

Priyanka S 6 years, 11 months ago

Send the complete question so that we can give the correct answer...

Nikki Kushwah 6 years, 11 months ago

What???

Anshika Pal???? 6 years, 11 months ago

So what??
  • 2 answers

Tanya Zanzad 6 years, 11 months ago

When sometimes factorisation is not possible then we use completing square method

Anshika Pal???? 6 years, 11 months ago

Its given in ncert read textbook
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Surface area to colour = surface area of hemisphere + curved surface area of cone

Diameter of hemisphere = 3.5 cm

So radius of hemispherical portion of the lattu = r =  {tex}\frac { 3.5 } { 2 } \mathrm { cm }{/tex} = 1.75 
r = Radius of the concial portion = {tex}\frac{3.5}2{/tex} = 1.75 
 Height of the conical  portion = height of top - radius of hemisphere = {tex}{/tex} 5 - 1.75  = 3.25 cm
Let I be the slant height of the conical part. Then,
{tex}l^2=h^2+r^2{/tex}

{tex}\begin{array}{l}l^2=(3.25)^2+(1.75)^2\\\Rightarrow l^2\;=10.5625+3.0625\\\Rightarrow l^2=13.625\\\Rightarrow l=\sqrt{13.625}\\\Rightarrow l=3.69\end{array}{/tex}
Let S be the total surface area of the top. Then,
{tex}S = 2 \pi r ^ { 2 } + \pi r l{/tex}
{tex}\Rightarrow \quad S = \pi r ( 2 r + l ){/tex}
{tex}\begin{array}{l}\Rightarrow S=\frac{22}7\times1.75(2\times1.75+3.7)\\\;\;\;\;=\;5.5(3.5+3.7)\\=5.5(7.2)\\=39.6\;cm^2\end{array}{/tex}

  • 1 answers

Yogita Ingle 6 years, 11 months ago

If a square is inscribed in a circle, then the diagonals of the square are diameters of the circle.
Let the diagonal of the square be d cm.
Thus, we have:
Radius, r = <nobr>d/2</nobr><amp-mathml data-formula="\[\frac{d}{2}\]" inline="" layout="container"></amp-mathml> cm
Area of the circle = <nobr>πr2</nobr><amp-mathml data-formula="\[\pi r^{2}\]" inline="" layout="container"></amp-mathml> = <nobr>π(d2/4)cm2</nobr>
We know:
d = <nobr>2× √  Side</nobr><amp-mathml data-formula="\[\sqrt{2} \times Side\]" inline="" layout="container"></amp-mathml>

<nobr>⇒Side=d/√2 cm</nobr>
Area of the square = <nobr>(Side)2</nobr>

<nobr>=(d/√2)2</nobr><amp-mathml data-formula="\[= \left ( \frac{d}{\sqrt{2}} \right ) ^{2}\]" inline="" layout="container"></amp-mathml>

<nobr>=(d2/2)cm2</nobr>
Ratio of the area of the circle to that of the square :

<nobr>=πd2/4 / d2/2</nobr><amp-mathml data-formula="\[= \frac{\pi \frac{d^{2}}{4}}{\frac{d^{2}}{2}}\]" inline="" layout="container"></amp-mathml> = <nobr>π/2</nobr>

Thus, the ratio of the area of the circle to that of the square is <nobr>π:2</nobr>

  • 4 answers

Arohi . 6 years, 11 months ago

Hi Anshika you can learn maths on youtube channel name is "e vidyarthi" and "maths teacher".?

Atul Gupta 6 years, 11 months ago

ThAts why i want ur kind intelligent girl no.

Anshika Pal???? 6 years, 11 months ago

Teachers are not good na thats why now tell me hoW can i learn through videos agar videos se to youtube pe konse channel ya cbsE guide ke videos se bolo

Anshika Pal???? 6 years, 11 months ago

Dude but for understanding how can i understand means how can i learn please help me puja
  • 1 answers

Sia ? 6 years, 4 months ago

According to the question, 
Height of an inverted cone = 12 cm
Radius of an inverted cone = 9 cm


{tex}\triangle \mathrm { ABE } \sim \triangle \mathrm { CDE }{/tex}
{tex}\therefore \frac { \mathrm { AB } } { \mathrm { CD } } = \frac { \mathrm { BE } } { \mathrm { DE } }\\ \Rightarrow \frac { 9 } { \mathrm { CD } } = \frac { 12 } { 4 } {/tex} 
{tex}\Rightarrow CD = 3\ cm{/tex}
Slant height of the cone = {tex}\sqrt { 12 ^ { 2 } + 9 ^ { 2 } } = \sqrt { 144 + 81 } = \sqrt { 225 }{/tex}{tex}= 15 \ cm{/tex}
CSA {tex}= \pi r l = \pi \times 9 \times 15 = 135 \pi{/tex} cm2
Slant height of the conical part containing water = {tex}\sqrt { 4 ^ { 2 } + 3 ^ { 2 } }{/tex} {tex}= 5 \ cm{/tex}
CSA of conical part containing water = {tex}\pi \times 3 \times 5{/tex}= 15{tex}\pi{/tex} cm2
Surface area not in contact with water = 135 {tex}\pi{/tex} cm2 - 15 {tex}\pi{/tex} cm2
= 120{tex}\pi{/tex} cm2
{tex}120 \times \frac { 22 } { 7 }{/tex} cm2
{tex}​​​​​​​= 377.14 {/tex}cm2

  • 2 answers

Ultra Dost A,T Kt 6 years, 10 months ago

No i m taking ur test if it is about AAS criteria it is wrong becaise AAS is not any criteria of similarity But u r right AA is sufficirnt but u dont hive answer according to my quesyion try again

Professor Vats ? 6 years, 11 months ago

True else only AA is sufficient
  • 2 answers

Ram Kushwah 6 years, 11 months ago

points are (4,k) and (1,0)

distance d2=(4-1)2+k2=52=25

or 32+k2-=25

k2 =16

So K= -4 or 4

Gaurav Seth 6 years, 11 months ago

By applying distance formula , find AB.
the value of k is 4

  • 4 answers

Ram Kushwah 6 years, 11 months ago

  Let the numbers are  a-d,,a, a+d

so a-d+a +a+d=24

3a=24 , a=8

and (8-d)x 8x(8+d)=440

8(64-d2)=440

512-8d2=440

8d2=72 do d= 3

 hence the no are 5,8 and 11

 

Puja Sahoo? 6 years, 11 months ago

Take, (a-d),a, and , (a+d) now, take their sum as, 24, yu will find, a and then their product = 440, yu ill, find d.

Anshika Pal???? 6 years, 11 months ago

Hey can u please explain who do u get 8 5 and 11

Puja Sahoo? 6 years, 11 months ago

5,8,11.....

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App