No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 5 answers

Akshita Khandelwal 6 years, 11 months ago

πr square

Gowtham Katta 6 years, 11 months ago

Pie r square units

Kumar Sonu 6 years, 11 months ago

pie r square

Music_ Lover?? 6 years, 11 months ago

Pie r square

Abhinav Rana 6 years, 11 months ago

πrsquare
  • 1 answers

S Aniruddh 6 years, 11 months ago

Given that sinA + sin2A =1 Then, sin A= 1 - sin2A Therefore, sin A = cos2A (since [1 - sin2A] is Cos2A by identity) Now substitute this in cos2A + cos4A = 1 Instead of cos2A substitute (1-sin2A) Equating it, 1 - sin2A + cos4A = 1 Now instead of sin A substitute cos2A , then sin2A = cos4A 1- cos4A + Cos4A = 1. Cos4A gets striked out Thus 1=1. Hence proved....
  • 3 answers

Akshita Khandelwal 6 years, 11 months ago

πrl

Nikita Sharma 6 years, 11 months ago

πrl

Yogita Ingle 6 years, 11 months ago

Cone is a three-dimensional structure having a circular base where a set of line segments, connecting all of the points on the base to a common point called apex.
Curved surface area of a cone = <nobr>πrl</nobr>
Total surface area of a cone = <nobr>πr(l+r)</nobr>

Where, r is the base radius, h is the height and l is the slant height of the cone.

  • 1 answers

Ram Kushwah 6 years, 11 months ago

Given That AD=2 cm , DB=3 cm   DE= 4 cm   BC=x

{tex}\begin{array}{l}As\;DE\parallel\;BC\\So\\\frac{AD}{AB}=\frac{DE}{BC}\\\frac2{2+3}=\frac4x\\2x=4\times5=20\\x=10\\\end{array}{/tex}

 

  • 2 answers

Gaurav Seth 6 years, 11 months ago

Let the speed of sailor in still water is x km/hr and the speed of stream is y km/hr.

Now, the speed of boat (upstream) = (x - y) km/hr

and the speed of boat (downstream) = (x + y) km/hr

Now, according to question,

     8/(x + y) = 40/60          {Since time = distance/speed}

=> 8/(x + y) = 4/6

=> 4(x + y) = 8*6

=> 4(x + y) = 48

=> x + y = 48/4

=> x + y = 12   ................1

Again, 8/(x - y) = 1

x - y = 8  ...............2

Add equation 1 and 2, we get

    2x = 20

=> x = 20/2

=> x = 10

From equation 1, we get

     10 + y = 12

=> y = 12 - 10

=> y = 2

Hence, the speed of sailor in still water is 10 km/hr and the speed of stream is 2 km/hr

Akshita Khandelwal 6 years, 11 months ago

plz answer......
  • 1 answers

Deepanshi ☺☺ 6 years, 11 months ago

2+3 is rational no.
  • 2 answers

Honey ??? 6 years, 11 months ago

There is no need to draw the diagram on a cartesian plane .

Honey ??? 5 years, 8 months ago

Root 34
  • 2 answers

Gaurav Seth 6 years, 11 months ago

Let the two numbers be A and B
=>A+B=15                      .............(1)
and 
1/A +1/B=3/10
⇒(A+B)/AB = 3/10
from (1)
(A+B)/AB = 15/AB
⇒15/AB = 3/10
⇒AB = 50        ............(2)
solving (1) and (2)
A = 10 and B = 5
or
A = 5 and B = 10

Honey ??? 6 years, 11 months ago

10and5
  • 2 answers

Chetna Pandey ? 6 years, 11 months ago

Angle Angle Angle - AAA

Sitanshu Tripathi 6 years, 11 months ago

R.d sharma ya to ncert ko refer karo
  • 2 answers

Pavan Kumawat 6 years, 11 months ago

But my answer is 1

Raj Dhali 6 years, 11 months ago

Since b-a is d and c-a=b+d-a b-a/c-a = d/b-a+d= d/2d=1/2
  • 1 answers

Veeraraghavan Pandurangan 6 years, 11 months ago

Let the four consecutive numbers in AP in be a-3d,a-d,a+d,a+3d According to question a-3d+a-d+a+d+a-3d=32 4a=32 a=8 (a-3d)(a+3d)/(a-d)(a+d)=7/15 (a^2-9d^2)(a^2-d^2)=7/15 8a^2=128d^ a^2=16d^2 a=4d 8=4d d=2,a=8, Nos are a-3d,a-d,a+d,a+3d, 2,6,10,14 are the numbers
  • 3 answers

Ayush Bandhu 6 years, 11 months ago

Mode= l+(f1-f0)/(2f1-f0-f2)h Mean=£fixi/fi Median=l+(n/2+cf/2)h Plz follow ncert

Anu Kumari 6 years, 11 months ago

Plz follow ncert book

Rishi Ranjan 6 years, 11 months ago

Open ncert maths book page no. 263, 274, 282
  • 1 answers

Deepak Gour 6 years, 11 months ago

Real no are the normal no like 1,2,3,4,5etc
  • 2 answers

Aryan Mittal 6 years, 11 months ago

Brain se

Lavina Singh??? 6 years, 11 months ago

What do u mean by this??
  • 1 answers

D.J Alok 6 years, 11 months ago

????? Complete your question .......
  • 2 answers

Chetna Pandey? 6 years, 11 months ago

Use formula ø/360 π r square

Chetna Pandey? 6 years, 11 months ago

132/7 cm square
  • 3 answers

Kuldeep Agrahari 6 years, 11 months ago

In a triangle, if sum of two sides is greater than the third side,then these sides can make a triangle otherwise not.so the three sides are calles pythagorean triplet.

Rishi Ranjan 6 years, 11 months ago

3,4,5 also.

Ronak Mule 6 years, 11 months ago

All no.s are not arranged like that to follow the Pythagoras Theorem. Like 25,24and7 follow the Pythagoras theorem. This is called Pythagorean triplet
  • 0 answers
  • 4 answers

Gyas Alam 6 years, 11 months ago

One upon sin p

Ajay Jaat 6 years, 11 months ago

Yaar anjali tum trigonometry kaisa karte ho .you are a legend .please mujhe bhi sikha do .

Maths Lover **** √Π÷= 6 years, 11 months ago

Taking LHS, (cosec p- sin p)(sec p- cos p)(tan p+cot p) =(1/sin p-sin p)(1/cosp-cos p)(sinp/cos p+cos p/sin p) =(1-sin^2p/sin p)(1-cos^2p/cos p)(sin^2p+cos^2p/sin p×cos p) (Cos^2p/sin p)(sin^2p/cosp)(1/sin p×cos p) =1×1×1 =1=RHS=proved

Deepak Varshney 6 years, 11 months ago

=(1/sinp-sinp)(1/cosp-cosp)(sinp/cosp+cosp/sinp) =(1-sin²p/sin)(1-cos²p/cos)(sin²p+cos²p/sinpcosp) =(Cos²p/sinp)(sin²p/cosp)(sin²p+cos²p/sinpcosp) = 1
  • 3 answers

Chetna Pandey? 6 years, 11 months ago

Yesssss

Music_ Lover?? 6 years, 11 months ago

Yess it comes for 4 marks usually ..soo it is compulsory

Anu Kumari 6 years, 11 months ago

Ya ofcourse
  • 1 answers

Ajay Jaat 6 years, 11 months ago

By using NCERT we can prove it . Page no 145. Now do it yourself . Donot ask these silly question again.
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}\frac { \tan \theta } { 1 - \cot \theta } + \frac { \cot \theta } { 1 - \tan \theta } = 1 + \tan \theta + \cot \theta{/tex}
{tex}\text { L.H.S. } = \frac { \tan \theta } { 1 - \cot \theta } + \frac { \cot \theta } { 1 - \tan \theta }{/tex}
{tex}= \frac { \frac { \sin \theta } { \cos \theta } } { 1 - \frac { \cos \theta } { \sin \theta } } + \frac { \frac { \cos \theta } { \sin \theta } } { 1 - \frac { \sin \theta } { \cos \theta } }{/tex}
{tex}= \frac { \sin ^ { 2 } \theta } { \cos \theta ( \sin \theta - \cos \theta ) } - \frac { \cos ^ { 2 } \theta } { \sin \theta ( \sin \theta - \cos \theta ) }{/tex}
{tex}= \frac { \sin ^ { 3 } \theta - \cos ^ { 3 } \theta } { \sin \theta \cos \theta ( \sin \theta - \cos \theta ) }{/tex}
{tex}= \frac { ( \sin \theta - \cos \theta ) \left( \sin ^ { 2 } \theta + \cos ^ { 2 } \theta + \sin \theta \cos \theta \right) } { \sin \theta \cos \theta ( \sin \theta - \cos \theta ) }{/tex}{tex}\left[ {\because {a^3} - {b^3} = (a - b)({a^2} + ab + {b^2}} \right){/tex}
{tex}= \frac { \sin ^ { 2 } \theta } { \sin \theta \cos \theta } + \frac { \cos ^ { 2 } \theta } { \sin \theta \cos \theta } + \frac { \sin \theta \cos \theta } { \sin \theta \cos \theta }{/tex}
{tex}= \tan \theta + \cot \theta + 1 = 1 + \tan \theta + \cot \theta = R . H S \text { proved }{/tex}
Since, {tex}\tan A = \frac{{\sin A}}{{\cos A}}{/tex}

{tex}\cot A = \frac{{\cos A}}{{\sin A}}{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

Let {tex}p(x) =ax^3 + 3x^2 - bx - 6{/tex}
{tex}\because{/tex} - 1 is a zero
{tex}\therefore{/tex} {tex}p(-1) =0{/tex}
{tex}\Rightarrow{/tex} {tex}a(-1)^3 + 3(-1)^2 - b(-1) - 6 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}-a + 3 + b - 6 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}-a + b = 3.{/tex}.........(i)
Also, -2 is another zero
{tex}\therefore{/tex} {tex}p(-2) =0{/tex}
{tex}\Rightarrow{/tex} {tex}a(-2)^3 + 3(-2)^2 - b(-2) - 6 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}- 8a + 12 + 2b - 6 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}- 8a + 2b = -6{/tex}
{tex}\Rightarrow{/tex} {tex}4a - b = 3{/tex}.........(ii)
Solving equation (i) and (ii), we get
a = 2 and b = 5
{tex}\therefore{/tex} p(x) = 2x3 + 3x- 5x - 6
Let third zero = k
Sum of zeroes = {tex}\frac { - 3 } { 2 }{/tex}
{tex}\Rightarrow{/tex} -1 + (-2) + k = {tex}\frac { - 3 } { 2 } \Rightarrow k = \frac { - 3 } { 2 } + 3 = \frac { 3 } { 2 }{/tex}
Therefore, third zero = {tex}\frac { 3 } { 2 }{/tex}

  • 3 answers

Pavan Kumar 6 years, 11 months ago

If a line drawn parallel to the one side of triangle interesting at 2 distinct point then the line divides other two sides in same ratio

Aditya Maurya 6 years, 11 months ago

I think you have rs aggrawal book . Can you see from their.

Meghana Meghana 6 years, 11 months ago

refer NCERT textbook

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App