No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Riya Pal 6 years, 11 months ago

2/3

Honey ??? 6 years, 11 months ago

2/3 sorry wo ans glti se type ho gya tha 2/3 is ryt

Honey ??? 6 years, 11 months ago

6
  • 1 answers

Sia ? 6 years, 6 months ago

  1. PA .PB = (PN - AN)(PN + BN)
    = (PN - AN) (PN + AN) {tex}\left[ \begin{array} { c } { \because O N \perp A B } \\ { \therefore N \text { is the mid-point of } A B } \\ { \Rightarrow A N = B N } \end{array} \right]{/tex}
    = PN2 - AN2
  2. Applying Pythagoras theorem in right triangle PNO, we obtain
    OP2 = ON2 + PN2
    {tex}\Rightarrow{/tex}PN2 = OP2 - ON2
    {tex}\therefore{/tex} PN2 - AN2 = (OP2 - ON2) - AN2
    = OP2 - (ON2 + AN2)
    = Op2 _ OA [Using Pythagoras theorem in {tex}\Delta O N A{/tex}]
    = OP2 - OT2 {tex}[ \because O A = O T = \text { radius } ]{/tex}
  3. From (i) and (ii), we obtain
    PA.PB = PN2 - AN2 and PN2 - AN2 = OP2 - OT2
    {tex}\Rightarrow{/tex} PA .PB = OP2 - OT2
    Applying Pythagoras theorem in {tex}\triangle O T P{/tex}, we obtain
    OP2 = OT2 + PT2
    {tex}\Rightarrow{/tex} OP2 - OT2 = PT2
    Thus, we obtain
    PA.PB = OP2 - OT2
    and OP2 - OT2 = PT2
    Hence, PA.PB = PT2
  • 0 answers
  • 1 answers

Sujatha Sujatha 6 years, 11 months ago

Cubiod : length =15cm, breadth =10cm,height =3.5cm Cone : radius =5/2*10=1/4cm height =14/10cm Volum of woof in the entire stand = volume of cubiod - Volume of cone l×b×h - 1/3 πr^h
  • 4 answers

Sonal Kumari 6 years, 11 months ago

explain how

Sujatha Sujatha 6 years, 11 months ago

5/36

????? ❤️ 6 years, 11 months ago

Mera toh 1/36 aaraha h

Amir Raza 6 years, 11 months ago

5/36
  • 1 answers

Sia ? 6 years, 6 months ago

 

 

  1. PA .PB = (PN - AN)(PN + BN)
    = (PN - AN) (PN + AN) {tex}\left[ \begin{array} { c } { \because O N \perp A B } \\ { \therefore N \text { is the mid-point of } A B } \\ { \Rightarrow A N = B N } \end{array} \right]{/tex}
    = PN2 - AN2
  2. Applying Pythagoras theorem in right triangle PNO, we obtain
    OP2 = ON2 + PN2
    {tex}\Rightarrow{/tex}PN2 = OP2 - ON2
    {tex}\therefore{/tex} PN2 - AN2 = (OP2 - ON2) - AN2
    = OP2 - (ON2 + AN2)
    = Op2 _ OA [Using Pythagoras theorem in {tex}\Delta O N A{/tex}]
    = OP2 - OT2 {tex}[ \because O A = O T = \text { radius } ]{/tex}
  3. From (i) and (ii), we obtain
    PA.PB = PN2 - AN2 and PN2 - AN2 = OP2 - OT2
    {tex}\Rightarrow{/tex} PA .PB = OP2 - OT2
    Applying Pythagoras theorem in {tex}\triangle O T P{/tex}, we obtain
    OP2 = OT2 + PT2
    {tex}\Rightarrow{/tex} OP2 - OT2 = PT2
    Thus, we obtain
    PA.PB = OP2 - OT2
    and OP2 - OT2 = PT2
    Hence, PA.PB = PT2
  • 0 answers
  • 2 answers

D.J Alok 6 years, 11 months ago

2a +2b

Abhimanyu Singh 6 years, 11 months ago

What a question it is
  • 1 answers

Sia ? 6 years, 6 months ago


Given: Two triangles ABC and DEF in which {tex}\angle{/tex} A = {tex}\angle{/tex}D, {tex}\angle{/tex}B = {tex}\angle{/tex}E and {tex}\angle{/tex}C = {tex}\angle{/tex}F, AL and DM are angle bisectors of {tex}\angle{/tex}A
and {tex}\angle{/tex}D respectively
To prove: {tex}\frac{{BC}}{{EF}} = \frac{{AL}}{{DM}}{/tex}
Proof: Triangle ABC and DEF are Similar.
{tex}\Rightarrow {/tex} {tex}\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}{/tex} ......(i)
In {tex}\triangle {/tex} ABL and {tex}\triangle {/tex} DEM, we have
{tex}\angle{/tex}B= {tex}\angle{/tex}E [Given]
{tex}\angle{/tex} BAL= {tex}\angle{/tex} EDM [ {tex}\because {/tex} {tex}\angle{/tex} A= {tex}\angle{/tex} D {tex}\Rightarrow {/tex} {tex}\frac{1}{2}\angle A = \frac{1}{2}\angle D{/tex}
{tex}\Rightarrow {/tex} {tex}\triangle {/tex} ABL {tex} \sim {/tex} {tex}\triangle {/tex} DEM [AA similarity]
{tex}\Rightarrow {/tex} {tex}\frac{{AB}}{{DE}} = \frac{{AL}}{{DM}}{/tex} .......(ii)
From (i) and (ii) we have

{tex}\frac{{BC}}{{EF}} = \frac{{AL}}{{DM}}{/tex}

  • 1 answers

Raj Dhali 6 years, 11 months ago

Let the no be x Then x(4-√3)=39 X=39/4-√3 rationalise it you will get X=3(4+√3)
  • 2 answers

Pawan Khatana 6 years, 10 months ago

Thx a lot kunal bro

ẞì D Hàrth 6 years, 11 months ago

Sin (A-B) = sin 30 [ Here we cancel sin as they are on the both side]and cos ( A+B)= cos60 { similarly we also cancel cos} Now, A-B =30 A+B= 60 --------------- 2A= 90 ------------- A= 45 and B=15
  • 1 answers

Chetna Pandey ? 6 years, 11 months ago

Trigonometry , coordinate geometry and Statics
  • 1 answers

Yogita Ingle 6 years, 11 months ago

According to condition
The perpendicular point on y axis will be (0,2)
Distance between (4,2) and (0,2) = √ (x2 - x1)2 + (y2 - y1)2
= √ (4 -0)2 + (2 - 2)2
= √ 42 + 0
= 4 units

  • 2 answers

Akshita Khandelwal 6 years, 11 months ago

5

Yogita Ingle 6 years, 11 months ago

 √25 =  √ 5× 5 = 5

  • 2 answers

Anushka ??? 6 years, 11 months ago

Centre of circle is at origin => cordinates of centre of circle is O(0,0) A(3,4) are points on the circle which loe on the circumference of the circle .'. Radous of circle is OA ________________ OA= /(3-0)^2 + (4-0)^2 _________ OA= /3^2+4^2 ______ OA= /9+16 ___ OA= /25 OA=5units _ Circumference of circle =2/\r =2×22/7×5 =220/7 =31.42unis The radius=5units and circumference =31.42units NOTE:- ^=square of the number HOPE IT HELPS

Ram Kushwah 6 years, 11 months ago

If O(,0,0) is origin A(3,4) is a pint on circumference then

r=OB{ (3-0)2 +(4-0)2 }1/2

r=5

{tex}\begin{array}{l}Area=\mathrm{πr}^2=3.14\times5\times5=78.5\;\mathrm{sq}\;\mathrm{unit}\\\mathrm{circumference}=2\mathrm{πr}=2\times3.14\times5=31.4\\\end{array}{/tex}

  • 1 answers

Ram Kushwah 6 years, 11 months ago

{tex}\begin{array}{l}\frac{(1-\mathrm{tanA})^2}{(1-\mathrm{cotA})^2}=\frac{(1-{\displaystyle\frac{\mathrm{sinA}}{\mathrm{cosA}}})^2}{(1-\frac{\mathrm{cosA}}{\mathrm{sinA}})^2}\\=\frac{{\displaystyle(}\cos{\displaystyle\mathrm A}{\displaystyle-}{\displaystyle\mathrm{sinA}}{\displaystyle{\displaystyle)}^2}}{{\displaystyle\cos^2}{\displaystyle\mathrm A}}\times\frac{{\displaystyle\sin^2}{\displaystyle\mathrm A}}{(\mathrm{sinA}-\mathrm{cosA})^2}=\frac{\sin^2\mathrm A}{{\displaystyle\cos}^2\mathrm A}=\tan^2\mathrm A\\\end{array}{/tex}

  • 1 answers

Neha Sirur 6 years, 11 months ago

Which are the pair of no.s??
  • 2 answers

Nandini Jha?? 6 years, 11 months ago

44=h 9=r volume=22/7*44*9*9 11201.142

Neha Sirur 6 years, 11 months ago

Here h=18cm and circumference of circle =,44cm 2πr=44---- hence r=7,cm ,----vol,=πr2h-- 22/7 x7x7x18=2772cm3
  • 2 answers

Neha Sirur 6 years, 11 months ago

Sn=n/2 (2(9)+(n-1)8) 616=n/2(18+8n-8) 616= n/2( 10+8n) 1272= 10n+8n2 Whole divided by 2 4n2+5n-636=0 By solving n= 12,-53/4 Therefore n=12

Anshika & Aliens???? 6 years, 11 months ago

153
  • 1 answers

Neha Sirur 6 years, 11 months ago

Sin (1+sin/cos) + cos (1+cos/sin)......sin(sin+cos/cos)+ cos (sin+cos/sin).... Sin+cos (sin/cos+cos/sin)...sin+cos(sin2+cos2/sincos).....= Sin+cos/ sincos= sec+cosec

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App