No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Ashish Roy 6 years, 10 months ago

Pre board tension na lo...... Bas tension free padhai karna..... Agar pre board ke liye koi idea ya pre board question paper chahiye to email batao mai send kar dunga

Zeeshan Younis 6 years, 10 months ago

Cot@=12/5 Cot= base/perpendicular Tan@=5/12 Sin@=5/13 Sec@=13/12 Tan^2@-sin^2@=(25/144)-(25/169)=625/24336 Now sin^4@sec^2@ (5×5×5×5×13×13)/(13×13×12×12)=625/24336 Hence proved????????

????? ❤️ 6 years, 10 months ago

Tan square theta - sin square theta = sin to the power 4 theta * sec square theta
  • 1 answers

Sia ? 6 years, 4 months ago

Let the three numbers in A.P. be {tex}a - d, a, a + d{/tex}.
{tex}3a = 12 {/tex}or, {tex}a = 4{/tex}.
Also, (4 - d)3 + 43 + (4 + d)3 = 288
or, 64 - 48d + 12d2- d3 + 64 + 64 + 48d + 12d2 + d3 = 288
or, 24d2 + 192 = 288
or, 24d2 = 288 - 192
or, 24d2 = 96
or, d2 = 96/24
or, d2 = 4
d ={tex}\pm{/tex}2
The numbers are 2,4, 6, or 6,4,2.

  • 2 answers

Manu Manu Singh 6 years, 10 months ago

(3,o)

Zeeshan Younis 6 years, 10 months ago

3,0
  • 1 answers

Mohammed Bilal 6 years, 10 months ago

Give
  • 0 answers
  • 4 answers

Divya Garg 6 years, 10 months ago

3 hrs daily....doing a sample paper

Zeeshan Younis 5 years, 8 months ago

2 days...for complete revision

Puja Sahoo? 6 years, 10 months ago

1hr 30 min or 2 hrs daily..........

Lucifer ? Morningstar? 6 years, 10 months ago

Three hours.
  • 3 answers

Jatt Putt Aryan???? 6 years, 10 months ago

SecA+tanA=p ----------------------------(1) ∵, sec²A-tan²A=1 .......(secA+tanA)(secA-tanA)=1 ......... secA-tanA=1/p -----------------------(2) Subtracting (2) from (1) we get, 2tanA=p-1/p ......, tanA=(p²-1)/2p .....cotA=2p/(p²-1) Now, cosec²A-cot²A=1 .......cosec²A=1+cot²A ...... cosec²A=1+{2p/(p²-1)}² ....... cosec²A=1+4p²/(p²-1)² ..,..cosec²A=(p⁴-2p²+1+4p²)/(p²-1)² ......cosec²A=(p⁴+2p²+1)/(p²-1)².............., cosec²A=(p²+1)²/(p²-1)² ...... cosecA=(p²+1)/(p²-1)

Jatt Putt Aryan???? 6 years, 10 months ago

(P²+1)/(p²-1)

Puja Sahoo? 6 years, 10 months ago

(p²+1)/(p²-1) Ans.
  • 1 answers

Puja Sahoo? 6 years, 10 months ago

1 + root 2
  • 1 answers

Zeeshan Younis 6 years, 10 months ago

No.on 1st thrown ko add kro no. On 2nd thrown
  • 1 answers

Jatt Putt Aryan???? 6 years, 10 months ago

Their have no h.c.f of single digit
  • 1 answers

Sia ? 6 years, 4 months ago

Let the first term and the common difference of the AP be a and d respectively.
According to the question,
Third term + seventh term = 6
{tex} \Rightarrow {/tex} [a + (3 - 1)d] + [a + (7 - 1)d] = 6 = a + (n - 1)d
{tex} \Rightarrow {/tex} (a + 2d) + (a + 6d) = 6 {tex} \Rightarrow {/tex} 2a + 8d = 6
{tex} \Rightarrow {/tex} a + 4d = 3 ..... (1)
Dividing throughout by 2 &
(third term) (seventh term) = 8
{tex} \Rightarrow {/tex} (a + 2d) (a + 6d) = 8
{tex} \Rightarrow {/tex} (a + 4d - 2d) (a + 4d + 2d) = 8
{tex} \Rightarrow {/tex} (3 - 2d) (3 + 2d) = 8
{tex} \Rightarrow {/tex} 9 - 4d2 = 8
{tex} \Rightarrow 4{d^2} = 1 \Rightarrow {d^2} = \frac{1}{4} \Rightarrow d + \pm \frac{1}{2}{/tex}
Case I, when {tex}d = \frac{1}{2}{/tex}
Then from (1), {tex}a + 4\left( {\frac{1}{2}} \right) = 3{/tex}
{tex} \Rightarrow {/tex} a + 2 = 3 {tex} \Rightarrow {/tex} a = 3 - 2 {tex} \Rightarrow {/tex} a = 1
{tex}\therefore {/tex} Sum of first sixteen terms of the AP = S16
{tex} = \frac{{16}}{2}[2a + (16 - 1)d]{/tex} {tex}\because {S_n} = \frac{n}{2}[2a + (n - 1)d]{/tex}
= 8[2a + 15d]
{tex} = 8[2(1) + 15(\frac{1}{2})]{/tex}
{tex} = 8[12 + \frac{{15}}{2}]{/tex}
{tex} = 8[\frac{{19}}{2}]{/tex}
{tex} = 4 \times 19 = 76{/tex}
Case II. When {tex}d = - \frac{1}{2}{/tex}
Then from (1),
{tex}a + 4\left( { - \frac{1}{2}} \right) = 3{/tex}
{tex} \Rightarrow {/tex} a - 2 = 3 {tex} \Rightarrow {/tex} a = 3 + 2 {tex} \Rightarrow {/tex} a = 5
{tex}\therefore {/tex} Sum of first sixteen terms of the AP = S16
{tex} = \frac{{16}}{2}[2a + (16 - 1)d]{/tex} {tex}\because {S_n} = \frac{n}{2}[2a + (n - 1)d]{/tex}
{tex} = 8[2a + 15d] = 8\left[ {2(5) + 15\left( { - \frac{1}{2}} \right)} \right] = 8\left[ {10 - \frac{{15}}{2}} \right] = 8\left[ {\frac{5}{2}} \right] = 20{/tex}

  • 4 answers

Ayushi Singh 6 years, 10 months ago

Thanks

Jatin Jaju 6 years, 10 months ago

Each ch is equally distribution in marks. Read cbse guidelines about it in maths column.

Vikash Gujjar 6 years, 10 months ago

Co-ordinate geometry ch 7

Abi Shinchan 6 years, 10 months ago

Algebra Which includes linear equations,polynomials,quadratic equation
  • 1 answers

Abi Shinchan 6 years, 10 months ago

See in ur ncert textbook
  • 1 answers

Sia ? 6 years, 4 months ago

From point O angle of elevation is {tex}\theta{/tex} and from point P it is {tex}\phi{/tex}, OP =240 m.

Let PB = x m.
{tex}\tan \theta = \frac { 5 } { 12 } ; \tan \phi = \frac { 3 } { 4 }{/tex}
In right angled {tex}\triangle{/tex}OBA,
{tex}\frac { \mathrm { AB } } { \mathrm { OB } } = \tan \theta{/tex}
{tex}\Rightarrow \frac { h } { 240 + x } = \frac { 5 } { 12 }{/tex} .....(i)
 In right-angled {tex}\triangle{/tex}PBA,
{tex}\frac { A B } { P B } = \tan \phi{/tex}
{tex}\Rightarrow \quad \frac { h } { x } = \frac { 3 } { 4 }{/tex} .......(ii)
Dividing (i) by (ii), we get
{tex}\frac { h } { 240 + x } \times \frac { x } { h } = \frac { 5 } { 12 } \times \frac { 4 } { 3 }{/tex}
{tex}\Rightarrow \frac { x } { 240 + x } = \frac { 5 } { 9 } \Rightarrow 9 x = 1200 + 5 x{/tex}
{tex}\Rightarrow \quad 4 x = 1200 \Rightarrow x = 300{/tex}
Putting x= 300 in (ii) we get, {tex}h = \frac { 3 } { 4 } \times 300 = 225 \mathrm { m }{/tex}
Hence, height of lighthouse is 225 metres.

  • 4 answers

Jatin Jaju 6 years, 10 months ago

Do different types of question from advisors.

Divya Garg 6 years, 10 months ago

Ncert kr lena bahut to h...exam clear karne ke liye?but if you want to score good in maths...plz try to solve more extra questions...no need to run after rd sharma or any other reference book...?just do some sample papers and solve last years questions....u will have a great result..? u just need confidence and you can do it...all the best dear..??

Vansh Sehgal 6 years, 10 months ago

Yes its sufficient and if you will solve the board papers of back few years you can score very good percent in maths

Zeeshan Younis 6 years, 10 months ago

Yaar bohut hai Lakin AP rd se kr lena Rd se sirf ap mai question ata haii Baki ncert
  • 2 answers

Avinash Saigal 6 years, 10 months ago

let A be the observation point. and let B and C be the two positions of jet fighter. it takes 15 sec. to reach the point C from B. let the height of the jet fighter from the ground be BE = CD = h km the speed of the jet = 720 km/hr =720000m/hr distance = speed*time therefore BC = in the right angled triangle BEA, in the right angled triangle CDA, AD = AE+ED = AE+BC thus the height of the jet fighter is 2.598 km . Thank you???

Chirag Mantri 6 years, 10 months ago

1500m i guess so
  • 1 answers

Vansh Sehgal 6 years, 10 months ago

First a all right down all the formulas which you think you are unable to learn on a chart paper and then paste it at a place where you always see it then before sleeping or when you wake up you just read and you will be able to easily memorise it

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App