No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Nimish Jain 6 years, 10 months ago

You do atleast example 13,14,15 and exercise 8.4 question no 4 one que will come in 4 marks

Gungun_ U Cn Wish Me On 3 Feb? 6 years, 10 months ago

U need 2 practice more nd more

Khushnuda?Khushi ??? 6 years, 10 months ago

U just use formulae and try to solve atleast something. By writing exact formulae for that ques u can score atleast half of the mark
  • 1 answers

Sia ? 6 years, 4 months ago

Let the middle most terms of the A.P. be {tex}(a - d), a, (a + d){/tex}
Given {tex}a -d + a + a + d = 225{/tex}
{tex}3a = 225{/tex}
or, {tex}a = 75{/tex}
and the middle term = {tex}\frac { 37 + 1 } { 2 }{/tex}= 19th term
{tex}\therefore{/tex} A.P. is
(a - 18d ),....(a - 2d), {a - d), a, (a + d), (a + 2d),..........{tex}(a + 18d){/tex}
Sum of last three terms
{tex}(a + 18d) + (a + 17d) + (a + 16d) = 429{/tex}
or,{tex} 3a +51d = 429{/tex}
or, {tex}225 + 51d = 429 {/tex}
or, d = 4
First term a1 = a - 18d = 75 - 18{tex}\times{/tex}4 = 3
a2 = 3 + 4 = 7
Hence, A.P. = 3, 7, 11 ,.........., 147

  • 1 answers

Lakshita Saini 6 years, 10 months ago

side of square will be 42cm because there will 3 circle in a row or in a line then area of square _ 9×area of circle in which radius = 7
  • 1 answers

Mehakdeep Kaur 6 years, 10 months ago

X=m1x2 +m2x1/m1+m2 =4+(-3)/1+1 =4-3/2 =1/2 Y=m1y2+m2y1/m1+m2 =-5+2/2 =-3 Y=x-2 -3/2=1/2-2(cross multiply) -3/2=1-4/2 -3/2=-3/2
  • 1 answers

Sunny Chandrawat 6 years, 10 months ago

an=a+(n-1)d..360=120+(n-1)5..240=5n-5...245=5n...n=49
  • 1 answers

Abhinav Gaur 6 years, 10 months ago

Root 3 /2 of side of equilateral triangle is altitude
  • 4 answers

Mehakdeep Kaur 6 years, 10 months ago

Hcf=10. Lcm=1900 Hcf×lcm=10×1900=19000

Neha Sirur 6 years, 10 months ago

Lcm x hcf= 19000

Parmjit Singh 6 years, 10 months ago

Hcf=10 Lcm=18400

Abhinav Gaur 6 years, 10 months ago

HCF*LCM=product of two numbers
  • 1 answers

Akhilesh Vardikar 6 years, 10 months ago

Prove similar triangles included in your construction.
  • 1 answers

Yogita Ingle 6 years, 10 months ago

3x - y = 3........ (i)
9x - 3y = 9
3x - y = 3 .......... (ii)
(i) and (ii) are equal Hence, the given pair of equations has infinite possible solutions and the relation between these variables can be given by y = 3x - 3

  • 1 answers

Sia ? 6 years, 4 months ago

Given points are A(3k -1, k - 2), B(k, k - 7) and C(k-1, -k - 2)
We know that points A, B, C will be collinear, if the area of the ΔABC =0
Area of ΔABC={tex}\frac{1}{2}{/tex}|x1(y2 - y3)+x2(y- y1)+x3(y- y2)|
here, x=3k-1, x2 = k, x3= k-1, y1= k-2, y2= k-7, y3= -k-2
Area of ΔABC = 0
{tex}\Rightarrow{/tex} {tex}\frac{1}{2}{/tex}|(3k−1)[(k−7)−(−k−2)]+k[(−k−2)−(k−2)]+(k−1)[(k−2)−(k−7)]|=0
{tex}\Rightarrow{/tex} {tex}\frac{1}{2}{/tex}|(3k−1)(k−7+k+2)+k(−k−2−k+2)+(k−1)(k−2−k+7)|=0
{tex}\Rightarrow{/tex} |(3k−1)(2k−5)+k(−2k)+(k−1)(5)|=0
{tex}\Rightarrow{/tex} |3k(2k−5)−1(2k−5)−2k2+5k−5|=0
{tex}\Rightarrow{/tex} |6k2−15 k−2k+5−2k2+5k−5|=0
{tex}\Rightarrow{/tex} |4k2 - 10k - 2k|=0
{tex}\Rightarrow{/tex} 4k2 - 12k = 0
{tex}\Rightarrow{/tex} 4k(k-3) = 0
{tex}\Rightarrow{/tex} k = 0 or k - 3 =0
{tex}\Rightarrow{/tex} k = 0 or k = 3

  • 1 answers

Yogita Ingle 6 years, 10 months ago

If nth term of an A.P = 2n+1
then, first term of A.P = 2(1)+1
= 2+1
= 3
then, second term = 2 (2) + 1 = 4 +1 = 5
third term = 2 (3) +1 = 6+1 = 7
sum of terms = 3+5+7

sum of terms = 15

  • 2 answers

Yogita Ingle 6 years, 10 months ago

Since, 3 is the least prime factor of 'p' therefore the number 'q' must be odd (because if the number would have been even, then the least prime factor will definitely be '2')

So, p is odd. Similarly , q is also odd.

Hence p + q is even (that is, a multiple of 2)

Thus the least prime factor of 'p + q' is 2.

Devanshi Pradhan 5 years, 8 months ago

3
  • 2 answers

Yogita Ingle 6 years, 10 months ago

  2x + 3y = 9......... (i)
4x + 6y = 18 .... (ii)
On multiplying equation (1) with 2, we get
2(2x + 3y) = 2(9)
⇒ 4x + 6y = 18 .... (iii)
Here, both the equation (ii) and (iii) are same and we know that when both equations are exactly same there are infinitely many solutions and the value of x and y can't be predicted.

Mehakdeep Kaur 6 years, 10 months ago

Y=5/3; x=6{substition method}
  • 2 answers

Yogita Ingle 6 years, 10 months ago

x + 2y - 4 = 0
x + 2y = 4.......... (i)
2x + 4y - 12 = 0
2x + 4y = 12
x + 2y = 4 ......... (ii)
Here, both the equation (i) and (ii) are same and we know that when both equations are exactly same there are infinitely many solutions and the value of x and y can't be predicted.

Japisher Singh 6 years, 10 months ago

There is no solution ,lines are parallel ??????
  • 1 answers

Yogita Ingle 6 years, 10 months ago

Let the 4 numbers are a , a + d , a + 2d , a + 3d.
Sum of 4 numbers AP = 50
a + a + d + a + 2d + a + 3d = 50
⇒ 4a + 6d = 50
⇒ 2a + 3d = 25 --------------(1)
Also given the forth term is four times the first
4(a) = a + 3d
4a - a = 3d
a = d
putting a = d in (1) , we obtain
5d = 25
d = 5
a = 5 but d = a.
∴ First four terms are 5 , 10 ,15 , 20.

 

  • 1 answers

Mehakdeep Kaur 6 years, 10 months ago

Minor sector=205/33,. Major sector =41•66
  • 1 answers

Sia ? 6 years, 4 months ago

Given:
f(x) = (2x4 – 9x3 + 5x2 + 3x – 1)
Zeroes = (2 + √3) and (2 – √3)
Given the zeroes, we can write the factors = (x – 2 + √3) and (x – 2 – √3)
{Since, If x = a is zero of a polynomial f(x), we can say that x - a is a factor of f(x)}
Multiplying these two factors, we can get another factor which is:
((x – 2) + √3)((x – 2) – √3) = (x – 2)2 – (√3)2
⇒x2 + 4 – 4x – 3 = x2 – 4x + 1
So, dividing f(x) with (x2 – 4x + 1)


f(x) = (x2 – 4x + 1) (2x2 – x – 1)
Solving (2x2 – x – 1), we get the two remaining roots as

{tex}x = {-b \pm \sqrt{b^2-4ac} \over 2a}{/tex}
where f(x) = ax2 + bx + c = 0(using Quadratic Formula)

{tex}\mathrm{x}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(-1)}}{2(2)}{/tex}
{tex}\mathrm{x}=\frac{-1 \pm 3}{4}{/tex}
{tex}\Rightarrow \mathrm{x}=1,-\frac{1}{2}{/tex}
Zeros of the polynomial = {tex}1,-\frac{1}{2}, 2+\sqrt{3}, 2-\sqrt{3}{/tex}

  • 2 answers

Kuldeep Redhu 6 years, 10 months ago

The area of square=64 (given) Let the side be x By using the formula of area of square i.e Square of side=area of square We obtain X2 = 64 hence, x=8

Rohit Attri 6 years, 10 months ago

8
  • 0 answers
  • 1 answers

Krishna Kireeti 6 years, 10 months ago

Alpha=+3√3 Beta=-3√3

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App