No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers
U will get it in google ??
  • 3 answers

Paras ? ? Shah ? ? 6 years, 10 months ago

Which question ?

Pratyush Raj 6 years, 10 months ago

Exercise 1.1 is so easy...

Puja Sahoo? 6 years, 10 months ago

Yu can take help of this app,it also contains ncert solutions.............?
  • 2 answers

Paras ? ? Shah ? ? 6 years, 10 months ago

Let us take √2 is rational We can take x and y √2 = x/y Suppose x and s have a common factor other than 1. Then you have to divide by the common factor √2 = a/ b, where a and b are coprime. So b √2 = a On sq. Both side 2b ka 2 = a ka 2 2 divide a ka 2. So we take another integer c. a = 2c We get 2b ka 2 = 4c ka 2 b ka 2 = 2c ka 2 That means 2 divide b ka 2 and so 2 divides b. Therefore a and b have at least 2 as a common factor. This contradiction has arisen because of our incorrect assumption that √ 2 is rational. So, we conclude that √2 is irrational.
See in NCERT
  • 1 answers
If one number is perfect square and if it is fraction than it should completely divide each other
  • 2 answers

Gaurav Seth 6 years, 10 months ago

et the first angle be x and the second angle be y.
Then x = 4y/5
5x = 4y 
5x - 4y = 0 ......(1)
Also x + y = 180° .......(2)
Multiply eq (2) by 5
Then 5x + 5y = 900° ......(3)
(3) - (1) we get
9y = 900°
y = 100°
Put this value in eq (2)
x + 100° = 180°
x = 180° - 100°
x = 80°
Therefore, the angles are 80°, 100°, 80°, 100° because in a parallelogram opposite angles are equal.

Gaurav Seth 6 years, 10 months ago

Solution:

Let one angle be 

Other angle = 

But sum of adjacent angles in a parallelogram is 

 

 

 

 

 

 

Hence the angles of the parallelogram are  

  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Given, cosec θ + cot θ = p...(i)

We know that,  {tex}cosec^2\theta-cot^2\theta=1{/tex}

{tex}\Rightarrow (cosec\theta+cot\theta)(cosec\theta-cot\theta)=1{/tex}

{tex}\Rightarrow p(cosec\theta-cot\theta)=1{/tex}

{tex}\Rightarrow cosec\theta-cot\theta=\frac 1p{/tex} ....(ii)

Adding i and ii, we get

{tex}2cosec\theta=p+ \frac 1p{/tex}

{tex}cosec\theta=\frac{p^2+1}{2p}{/tex}

{tex}\Rightarrow sin\theta= \frac{1}{cosec\theta}=\frac{2p}{p^2+1}{/tex}

We know that,{tex}cos\theta=\sqrt{1-sin^2\theta}=\sqrt{1- \frac{4p^2}{(p^2+1)^2}}=\sqrt{\frac{p^4+1-2p^2}{(p^2+1)^2}}{/tex}

{tex}cos\theta=\sqrt{\frac{(p^2-1)^2}{(p^2+1)^2}}=\frac{p^2-1}{p^2+1} {/tex}

  • 1 answers

Ram Kushwah 6 years, 10 months ago

In rhombus ABCD

{tex}\angle A=\angle C{/tex}

And angle A and C both are not equal to 90°

So sum of opposite angles is not equal to 180°

So ABCD is not cyclic.

  • 1 answers

Yogita Ingle 6 years, 10 months ago

tan 26° /cot 64° = tan26° / cot(90°- 26°) = tan26° /tan26° = 1

  • 1 answers

Mansi Srivastava 6 years, 10 months ago

2/3 is a zero of polynomial Then,x=2/3 . 3x=2 . 3x-2=0 is a factor Divide the polynomial by 3x-2 Factorise the remainder and find the zeroes
  • 1 answers

Mansi Srivastava 6 years, 10 months ago

Let the point (x,y), (a-b,a+b) & (-a-b,a+b) be A, B & C Respectively.find lenght AB & AC THEN equate them as they are equal.
  • 3 answers

Gautam Prajapati 6 years, 10 months ago

You can't learn maths or anyone cannot learn maths it is not possible....... You have to do practice and hard practice for it.... ☺️☺️

Naitik Garg 6 years, 10 months ago

We cannot learn math it only wants practise and practise

Harshit Khandelwal 6 years, 10 months ago

Maths is not be learn by anyone because it want practise and only practise
  • 1 answers

Gaurav Seth 6 years, 10 months ago

let ' a' be any positive integer and b = 3.

we know, a = bq + r , 0 <  r< b.

now, a = 3q + r , 0<r < 3.

the possibilities of remainder = 0,1 or 2

Case I - a = 3q

a2 = 9q2

  = 3 x ( 3q2)

  = 3m (where m = 3q2)

Case II - a = 3q +1

a= ( 3q +1 )2

  =  9q2 + 6q +1

  = 3 (3q2 +2q ) + 1

  = 3m +1 (where m = 3q2 + 2q )

Case III - a = 3q + 2

a2 = (3q +2 )2

    = 9q+ 12q + 4

    = 9q2 +12q + 3 + 1

  = 3 (3q2 + 4q + 1 ) + 1

  = 3m + 1 where m = 3q2 + 4q + 1)

  From all the above cases it is clear that square of any positive integer ( as in this case a) is either of the form 3m or 3m +1.

  • 1 answers

Sia ? 6 years, 4 months ago

Since, α and β are the zeroes of the quadratic polynomial
f(x) = x2 - p (x+1) - c=x2-px-(p+c)
So A=1 B=-p,C=-(p+c)
Sum of the zeroes α + β = {tex}-\frac BA{/tex}=P
Product of the zeroes αβ ={tex}\frac CA{/tex}=- (p + c)
(α + 1)(β + 1)
= αβ + α + β + 1
= αβ + (α + β) + 1
=-(p+c)+p+1
=-p-c-p+1
=1-c
Hence proved

  • 0 answers
  • 1 answers

Puja Sahoo? 6 years, 10 months ago

Sin theta= p square - 1/ p square +1...... sec thita= p square +1/2p ..........
  • 1 answers

Gaurav Seth 6 years, 10 months ago

Let r1 and r2 cm be the radii of the base of the cylinder and cone respectively. Then, r1 = r2 = 8 cm Let h1 and h2 cm be the heights of the cylinder and the cone respectively. Then,

h1 = 240 cm and h2 = 36 cm

Now, Volume of the cylinder = r12h1 cm3 = ( x 8 x 8 x 240) cm3 = ( x 64 x 240) cm3
Volume of the cone = 
Total volume of the iron = Volume of cylinder + Volume of the cone


Hence, total weight of the pillar = Volume x Weight per cm3
= (22 x 64 x 36 x 7.5) = 380.16 kg
 

  • 1 answers

Gaurav Seth 6 years, 10 months ago

Sol:

Given:  A circle touching the side BC of ΔABC at P and AB, AC produced at Q and R respectively.

RTP: AP = 1/2 (Perimeter of ΔABC)

Proof: Lengths of tangents drawn from an external point to a circle are equal.
          ⇒ AQ = AR, BQ = BP, CP = CR.
          Perimeter of ΔABC = AB + BC + CA
                                      = AB + (BP + PC) + (AR – CR)
                                      = (AB + BQ) + (PC) + (AQ – PC) [AQ = AR, BQ = BP, CP = CR]
                                      = AQ + AQ
                                      = 2AQ

           ⇒ AQ = 1/2 (Perimeter of ΔABC)
 
           ∴ AQ is the half of the perimeter of ΔABC.

  • 1 answers

Gaurav Seth 6 years, 10 months ago

Given ,p(e)=5×10-2  = 5/100

therefore,P(E)=0.05

 P(E) + P(Not E) = 1
⇒ 0.05 + P(Not E) = 1
∴ P(Not E) = 1 – 0.05 = 0.95

  • 1 answers

Ayushi Jain 6 years, 10 months ago

Lhs (tan A+sin A )(tan A-sin A) _(tanA+sin A)(tan A-sin A) =(2tan A)(2sin A) =4tan A sin A Rhs 4√(tanA+sin A)(tanA-sinA) 4√tan Square A-sin square A 4√tan square A_sin square A 4√sin square A/cos square A_sin square A 4√sin square A (1/cos square A-1) 4√sin square A (sec square A-1) 4√sin square A tan square A 4 sin A tan A Hence proved
  • 2 answers

Naitik Garg 6 years, 10 months ago

48

Puja Sahoo? 6 years, 10 months ago

48.....??
  • 2 answers

Naitik Garg 6 years, 10 months ago

(2,-3) and (4,-6)

Piyush Raj Sahni 6 years, 10 months ago

(2,-3) and (4,-6)
  • 2 answers

Chirag Jain 6 years, 10 months ago

a=3 d=15-3 =12 A21 = a+20d =3+20×12 =3+240 =243 An=243+120 =363 An=a+(n-1)d 363=3+(n-1)12 363-3=12n-12 360+12=12n 372=12n 372/12=n 31=n Ans=31

Raj Kumar 6 years, 10 months ago

31 st term
  • 1 answers

Chirag Jain 6 years, 10 months ago

Let us assume 3+√5 is a rational number But all the rational no. are in the form p/q So we can also write 3+√5 in p/q form and when we divide p/q with any of their common factor we get a/b which are coprime 3+√5 = a/b √5 = a/b-3 √5= a-3b/b But we know a-3b/b is a rational no But √5 is an irrational number => Our assumption is wrong. => 3+√5 is an irrational no

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App