No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Puja Sahoo? 6 years, 10 months ago

let the roots are 7x and 6x. So, sum of roots are 13x , but sum of roots is also -b/a and -b/a = -(-k)/3 So, 13x=k/3 39x=k and product of roots are c/a=42x2 14/3 =42x2 So,x2=1/9 So, x=1/3 So, k=39/3 So, k=13............

Shyam Thakur 6 years, 10 months ago

Give full solution

Puja Sahoo? 6 years, 10 months ago

K=13......
  • 1 answers

Khushi Thakur 6 years, 10 months ago

S30=3(S20-S10), S30=S60-S30 S30=S30 L. H. S=R.H.S
  • 1 answers

Sia ? 6 years, 4 months ago


P is midpoint of QR
or, {tex}\frac { a } { 3 } = \frac { - 5 + ( - 1 ) } { 2 }{/tex}
or,  {tex}\frac { a } { 3 } = \frac { - 6 } { 2 }{/tex}
or, a = -9

  • 2 answers

Honey ??? 6 years, 10 months ago

Just add two opposite coordinates of the plgm and subtract the side coordinate u will get the last coordinate.

Honey ??? 6 years, 10 months ago

-3
  • 1 answers

Honey ??? 6 years, 10 months ago

13 unitssssssssssss
  • 0 answers
  • 1 answers

Deepak Singh 6 years, 10 months ago

3x-3y=5.....eq 1 7x-2y=2....eq 2 X=3y+5/3 Put in eq 1 7(3y+5/2)-2y=2
  • 4 answers

Puja Sahoo __?_Palak 6 years, 10 months ago

4

Yogita Ingle 6 years, 10 months ago

Mode = 3Median - 2 Mean

= 3 × 8 - 2 × 10

= 24 - 20

= 4

Ranganath Gowda 6 years, 10 months ago

4

Puja Sahoo? 6 years, 10 months ago

4.......
  • 3 answers

Puja Sahoo __?_Palak 6 years, 10 months ago

28

Ram Kushwah 6 years, 10 months ago

a+6×-4=4

a-24=4

a=24+4=28

Puja Sahoo? 6 years, 10 months ago

a=28.......
  • 2 answers

Jatin Sirohi 6 years, 10 months ago

1/root2

Shraddha Nawale?? 6 years, 10 months ago

I/root2
  • 3 answers

Shiwan Tash 6 years, 10 months ago

x = 125 km/h______________ y = 25 km/ h

Shiwan Tash 6 years, 10 months ago

Let suppose speed of car started from (A)= x km/h ________ speed of car started from (B)= y km/h D = S×T so, AC = x × 15 AC = 15x And,. BC = 15y AC = AB + BC 15x = 150 + 15y {AB is given the dis} x - y =10 { 1 } now,. AD = 1x BD = 1y AB = AD + DB 150 = x + y { 2 } From {1} and {2} x - y = 10 x + y = 150 _______________________ 2x = 250 x = 125 km/h { put in {2} eq } x + y = 150 125 + y = 150 y = 150 - 125 y = 25 km/h _______Answer ________

Ranganath Gowda 6 years, 10 months ago

CarA speed=80km/h CarB speed=70km/h
  • 1 answers

Pratibha Sahu 6 years, 10 months ago

Let ∆ABC ~∆PQR Area of ∆ABC=area of ∆PQR (AB)²=(PQ)², (BC)²=(QR)²,(AC)² = (PR)² (by theorem 6.3). So, AB=PQ, BC=QR,AC =PR So, ∆ABC is congruent to ∆PQR. (By SSS. Criteria )
  • 1 answers

Anushreya Chakraborty 6 years, 10 months ago

For zeroes - 4x² - 4x +1 = 0 4x² - 2x - 2x + 1 = 0 2x(2x - 1) - 1(2x - 1) = 0 (2x - 1)(2x - 1) = 0 2x - 1 = 0 or 2x - 1 = 0 x = 1/2 or x = 1/2 Hence, the zeroes are 1/2,1/2.
  • 1 answers

Ram Kushwah 6 years, 10 months ago

y=14-x

From eqn(2)

x-(14-x)=4

2x=18, X=9

From(1)

y=14-x=14-9=5

  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago


Let E be the midpoint of AB.
{tex}\therefore \quad \frac { x + 1 } { 2 } = 2{/tex} or x = 3
and {tex}\frac { y + ( - 4 ) } { 2 } = - 1{/tex} or, y = 2
or, B(3, 2)
Let F be the mid-point of AC.Then,
{tex}0=\frac{x_1+1}{2}{/tex} or {tex}x_1=-1{/tex}
and   {tex}\frac { y _ { 1 } + ( - 4 ) } { 2 }{/tex} = -1 or, y1 = 2
or, C= (-1, 2)
Now the co-ordinates are A(1, - 4), B(3,2), C (-1,2)
Area of triangle
{tex}= \frac { 1 } { 2 } \left[ x _ { 1 } \left( y _ { 2 } - y _ { 3 } \right) + x _ { 2 } \left( y _ { 3 } - y _ { 1 } \right) + x _ { 3 } \left( y _ { 1 } - y _ { 2 } \right) \right]{/tex}
{tex}= \frac { 1 } { 2 } [ 1 ( 2 - 2 ) + 3 ( 2 + 4 ) - 1 ( - 4 - 2 ) ]{/tex}
{tex}= \frac { 1 } { 2 } [ 0 + 18 + 6 ]{/tex}
=  12 sq units.

  • 2 answers

Shyam Thakur 6 years, 10 months ago

What is full question

D.J Alok 6 years, 10 months ago

Complete your question....
  • 2 answers

Shyam Thakur 6 years, 10 months ago

Please prove this theorem??

D.J Alok 6 years, 10 months ago

Its given in ncert....
  • 5 answers

Rishu Gupta 6 years, 10 months ago

Ans is 6

Khadija Fatima 6 years, 10 months ago

User 21 answer wrong?

Khadija Fatima 6 years, 10 months ago

How

User 21 6 years, 10 months ago

Diameter will be 2

Khadija Fatima 6 years, 10 months ago

Is it coming 9
  • 1 answers

Sia ? 6 years, 4 months ago

The least prime factor of a and b is not 2, hence both are odd numbers.
Hence( a+b) is an even number.
So least common factor of( a+b ) is 2.

  • 1 answers

Sia ? 6 years, 4 months ago

Let a and d be the first term and common difference respectively of the given A.P. Then
an = a + (n - 1)d
{tex}\frac { 1 } { n } ={/tex} mth term 
{tex}\Rightarrow \frac { 1 } { n } {/tex}= a + ( m - 1 ) d ...(i)
{tex}\frac { 1 } { m }{/tex}= nth term
{tex}\Rightarrow \frac { 1 } { m } {/tex}= a + ( n - 1 ) d ...(ii)
On subtracting equation (ii) from equation (i), we get
{tex}\frac { 1 } { n } - \frac { 1 } { m } = {/tex} [a+  (m-1) d] -[ a+ (n -1)d]
=  a + md - d - a - nd + d
{tex}= ( m - n ) d{/tex}
{tex} \Rightarrow \frac { m - n } { m n } = ( m - n ) d {/tex}
{tex}\Rightarrow d = \frac { 1 } { m n }{/tex}
Putting d = {tex}\frac { 1 } { m n }{/tex} in equation (i), we get
{tex}\frac { 1 } { n } = a + \frac { ( m - 1 ) } { m n } {/tex}
{tex}\Rightarrow \frac { 1 } { n } = a + \frac { 1 } { n } - \frac { 1 } { m n } {/tex}
{tex}\Rightarrow a = \frac { 1 } { m n }{/tex}
{tex}\therefore{/tex} (mn)th term = a + (mn - 1) d
{tex}\frac { 1 } { m n } + ( m n - 1 ) \frac { 1 } { m n } {/tex}{tex}\left[ \because a = \frac { 1 } { m n } = d \right]{/tex}
= {tex}\frac { 1 } { m n } + \frac { mn } { m n } - \frac { 1 } { m n }{/tex}
= 1

  • 0 answers
  • 1 answers

Puja Sahoo? 6 years, 10 months ago

By using long division method that we had started learning from 8th class..........?
  • 1 answers

Sia ? 6 years, 4 months ago

Let AB be the surface of the lake and let P be a point of observation such that AP = h metres. Let C be the position of the cloud and C be its reflection in the lake. Then, CB = C' B. Let PM be perpendicular from P on CB. Then,
{tex}\angle C P M = \alpha{/tex} and {tex}\angle M P C ^ { \prime } = \beta.{/tex} 
Let CM = x.
Then, CB = CM + MB = CM + PA = x + h.
In {tex}\triangle \mathrm { CPM },{/tex} we have

{tex}\tan \alpha = \frac { C M } { P M }{/tex}
{tex}\Rightarrow \quad \tan \alpha = \frac { x } { A B }{/tex}
{tex}\Rightarrow \quad A B = x \cot \alpha{/tex}.....(i)
In {tex}\triangle{/tex}PMC', we have
{tex}\tan \beta = \frac { C ^ { \prime } M } { P M }{/tex}
{tex}\Rightarrow \quad \tan \beta = \frac { x + 2 h } { A B }{/tex}  [{tex}\because{/tex}CM = C'B + BM = x  + h + h] 
{tex}\Rightarrow \quad A B = ( x + 2 h ) \cot \beta{/tex}......(ii)
From (i) and (ii), we have
{tex}x \cot \alpha = ( x + 2 h ) \cot \beta{/tex}
[On equating the values of AB]
{tex}\Rightarrow \quad x ( \cot \alpha - \cot \beta ) = 2 h \cot \beta{/tex}
{tex}\Rightarrow \quad x \left( \frac { 1 } { \tan \alpha } - \frac { 1 } { \tan \beta } \right) = \frac { 2 h } { \tan \beta }{/tex}
{tex}\Rightarrow \quad x \left( \frac { \tan \beta - \tan \alpha } { \tan \alpha \tan \beta } \right) = \frac { 2 h } { \tan \beta }{/tex}
{tex}\Rightarrow \quad x = \frac { 2 h \tan \alpha } { \tan \beta - \tan \alpha }{/tex}
Hence, the height CB of the cloud is given by
CB = x + h
{tex}\Rightarrow \quad C B = \frac { 2 h \tan \alpha } { \tan \beta - \tan \alpha } + h{/tex}
{tex}\Rightarrow \quad C B = \frac { 2 h \tan \alpha + h \tan \beta - h \tan \alpha } { \tan \beta - \tan \alpha } = \frac { h ( \tan \alpha + \tan \beta ) } { \tan \beta - \tan \alpha }{/tex}

  • 1 answers

Puja Sahoo? 5 years, 8 months ago

Check it from Google.......?
  • 1 answers

..... ...... 6 years, 10 months ago

(2^1/8)*(3^5/16)*(x^5/8)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App