No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 4 answers

Khushboo Giri 6 years, 10 months ago

a16=5(a3) a+15d=5(a+2d) a+15d=5a+10d 5a-a=15d-10d 4a=5d a=5d/4.----------(1) a10=41 a+9d=41 5d/4+9d=41 5d+36d/4=41 41d/4=41 41d=41×4 d=4 putting the value inin equation 1 a=5×4/4 a=5 Now, S15=15/2{2×5+(15-1)4} =15(5+56) =915

Sneha Singh 6 years, 10 months ago

Sorry ' it's'

Sneha Singh 6 years, 10 months ago

Can u please give me it full solution

Sonu Kumar 6 years, 10 months ago

The sum is 495
  • 2 answers

Affu 😊 6 years, 10 months ago

Area of rhombus = 1/2 products of its diagonals

Chetna Sharma 6 years, 10 months ago

A=pq/2,
  • 1 answers

Savrit Mor 6 years, 10 months ago

7(a+6d)=11(a+10d) 7a+42d=11a+110d 7a-11a=110d-42d -4a= 68d a=-17d a+17d=0 a+(18-1)d=0 18th term = 0
  • 3 answers

Ram Kushwah 6 years, 10 months ago

3x+y-1 =0

(2k-1)x+(k-1)y-2k-1 =0

{tex}\begin{array}{l}\frac{\mathrm a1}{\mathrm a2}=\frac{\mathrm b1}{\mathrm b2}\neq\frac{\mathrm c1}{\mathrm c2}\\\frac3{2\mathrm k-1}=\frac1{\mathrm k-1}\\3\mathrm k-3=2\mathrm k-1\\\mathrm k=2\\\mathrm{Now}\;\frac{\mathrm c1}{\mathrm c2}=\frac{-1}{-2\mathrm k-1}=\frac15\neq\frac{\mathrm a1}{\mathrm a2}(=\frac33=1)\end{array}{/tex}

Hence for k=1 the eqns has no solution

Puja Sahoo? 6 years, 10 months ago

Topr is always ryt.. i mean honey ji ka answer shi hai.....

Honey ??? 6 years, 10 months ago

For no solution a1/a2 not=b1/b2 uske baad value put kar do
  • 4 answers

Ram Kushwah 6 years, 10 months ago

No need to worry about sst,

sst is always week for maths good students

Answer all question write something what you remember

Some time topper in mathsgets minimum marks  in sst. so not to worry.

before exam read small and MCQ aur rat lo

Read like stories,write like stories.

All the best

 

Aayu... Sad Girl....??? 6 years, 10 months ago

Same here
I am in little tension only about ssst

Aayu... Sad Girl....??? 6 years, 10 months ago

Yr plz ques toh complete kroo
  • 1 answers

Aryan Yadav 6 years, 10 months ago

Take the given three no suppose -4,6,8 and factories them seprately 4-2^2,6-2x3,8-2^3 and then take their LCM -2^3x3. That's it
  • 3 answers

Shivay Brahmåñ 6 years, 10 months ago

Full question is tan0/1-cot0+cot0/1-tan0= 1+ sec.cosec

Puja Sahoo? 6 years, 10 months ago

Complete yur question first........?
Kiske equal prove krna hai
  • 2 answers

Ram Kushwah 6 years, 10 months ago

{tex}\begin{array}{l}(a^2+9)x^2+13x+6a\\\end{array}{/tex}

Supose the zeros are m and 1/m

then

m x 1/m=6a/(a2+9)

a2+9=6a

a2-6a+9=0

(a-3)^2=0

a=3,3

Honey ??? 6 years, 10 months ago

3
  • 4 answers

Muskaan ? 6 years, 10 months ago

x=9/2 n y= 5/4

Geetanand Yadav 6 years, 10 months ago

Are you ?%sure about your answer chethan

Chethan Chethu 6 years, 10 months ago

X= 9 , y =-1

Geetanand Yadav 6 years, 10 months ago

X=9/2and y=5/4
  • 2 answers

Geetanand Yadav 6 years, 10 months ago

If we use D then no real root exist

Muskaan ? 6 years, 10 months ago

Use D =b^2 - 4ac
  • 1 answers

D.J Alok 6 years, 10 months ago

Proved in ncert...
  • 3 answers

Preeti Tiwari ? 6 years, 10 months ago

In this ap , d= a2-a1----(1) d=a3-a2--------(2) From eq. 1and 2 a2-a1=a3-a2 x+10-(2x)=3x+2-(x+10) x+10-2x=3x+2-x- 10 -x+10=2x-8 10+8=2x+x 18=3x x=6

Geetanand Yadav 6 years, 10 months ago

Put formula 2b=a+c

Geetanand Yadav 6 years, 10 months ago

X=6
  • 1 answers

Geetanand Yadav 6 years, 10 months ago

Put them both equal to 36 you will get two equation then compare them you will get the answer
  • 3 answers

Rajneesh Kaurav 6 years, 10 months ago

53/365

S N Mahato 6 years, 10 months ago

Ryt
1/7
  • 2 answers

Sara Sharma 6 years, 10 months ago

No - 150 is no a term of this A.P an= a+ (n-1)d -150 = 17 + ( n-1)-5 we will solve the eq. - 150 - 17 = ( n-1)-5 -167=(n-1)-5 167/5=n-1 167+5/5=n 172/5=n n is in fraction and any term cannot be in fraction hence -150 is not a term of A.P Read more on Brainly.in - https://brainly.in/question/1088917#readmore

Choudhary Anil 6 years, 10 months ago

a=1 7 ,. D = -5 , an =-150 Let -150 be the nth term an= a+(n-1) d -150= 17+(n-1) -5 -167=(n-1)-5 -33.4 =( n-1) -33.4+1 = n n=-32.4
  • 4 answers

Sara Sharma 6 years, 10 months ago

B^2-4ac=(4)^2-4(2)(3)=16-24=-8.Therefore -8<0

Vinit Kumar 6 years, 10 months ago

Hence it have no real roots

Geetanand Yadav 6 years, 10 months ago

D=-8.if D is less than zero than no real root exist

Vinit Kumar 6 years, 10 months ago

D=16-24 D=-8 D=<0
  • 2 answers

Ram Kushwah 6 years, 10 months ago

(4-1/n)+(4-2/n)+.......

=4n-1/n(1+2+3........n)

{tex}\begin{array}{l}\text{=4n-}\frac1{\mathrm n}\times\frac{\mathrm n(\mathrm n+1)}2\\\text{=4n-}\frac{n+1}2\\\text{=}\frac{8n-n-1}2\\\text{=}\frac{7n-1}2\end{array}{/tex}

Ritika Bisht 6 years, 10 months ago

Sn = (7n-1)/2
  • 1 answers

Geetanand Yadav 6 years, 10 months ago

9
  • 2 answers

Ram Kushwah 6 years, 10 months ago

LCM of 8,15,21=840

110000/840=130.95

hence the greatest no divisible by 840 or divisible by 8,15,21:

=840*130=109200

 

 

Geetanand Yadav 6 years, 10 months ago

100840
  • 2 answers

Ritika Bisht 6 years, 10 months ago

https://www.mathexpression.com/basic-algebra-formulas.html Math Expression: Basic Algebra Formulas

Ritika Bisht 6 years, 10 months ago

https://www.teachoo.com/6764/932/Algebra-Formulas---(a-b)-3---(a-b)-2--Exponents--Square-Root/category/Introduction/ Algebra Formulas - (a+b)^3 , (a+b)^2 , (a+b+c)^3, a^3 - b^3 - Teachoo
  • 5 answers

Ritika Bisht 6 years, 10 months ago

Ise solve kero answer aa jayega

Ritika Bisht 6 years, 10 months ago

Yes i will tell you ,513=n/2(2×54+(n-1)-3)

Ritika Bisht 6 years, 10 months ago

N = 18,19

Ram Kushwah 6 years, 10 months ago

Can any one tell why two values of terms are coming?

Gaurav Seth 6 years, 10 months ago

54, 51, 48,...........

First term a = 54

Common difference d = 51 - 54 = -3

Let n is the number of terms.

Given, sum = 513

=> (n/2)*{2a + (n - 1)d} = 513

=> n{2a + (n - 1)d} = 513*2

=> n{2*54 + (n - 1)*(-3)} = 1026

=> n{108 - 3n + 3} = 1026

=> n{111 - 3n} = 1026

=> 111n - 3n2 = 1026

=> 3n2 - 111n + 1026 = 0

=> n2 - 37n + 342 = 0            {divide by 3}

=> (n - 18)*(n - 19) = 0

=> n = 18, 19

Hence, number of terms is either 18 or 19

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App