No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Puja Sahoo 6 years, 9 months ago

x sinA×sin^2A + y cosA×cos^2A = sinA ×cosA.... x sinA × sin^2A + x sinA × cos^2A= sinA×cosA... as xsinA=ycosA..... ab common le jao xsinA ko yu will get x=cosA and y= sinA.... and we know that sin^2A+ cos^2A=1... so, x^2+y^2=1... proved

Anushka Jugran❣️ 6 years, 9 months ago

x sin^3A me se xsinA baahar lelo.. Then xsinA ki jagah ycosA put karo.. Then if u solve u will get y=sin A nd x=cosA... Phir ye value vahan daal do jahan aapko proof karna hai..
  • 1 answers

Anushka Jugran❣️ 6 years, 9 months ago

Co prime numbers r the numbers which do not have factors other than 1 nd itself..
  • 2 answers

Puja Sahoo 6 years, 9 months ago

Dusra, hai ki let tge ratio in which p divides ab be k:1 then....x or y coordinates nikalo, by section formula and put it in lhs..... yu will get the answer.......

Puja Sahoo 6 years, 9 months ago

Ho gya solve....ise ap 2 trike se solve kr skte ho, pehla using the slope formula i.e. y1-y2/x1-x2.... by putting slope of AP = slope of AB........
  • 3 answers

Anushka Jugran❣️ 6 years, 9 months ago

Incomplete question... Where is the figure??

Aman Soni 6 years, 9 months ago

where is figure???????

Affu 😊 6 years, 9 months ago

Fig???
  • 2 answers

Ishit__ __? 6 years, 9 months ago

*LCM

Ishit__ __? 6 years, 9 months ago

First take the pcm and that will help you to remove the roots and then put the value of cosec A-1 as cotA then simpify it by taking cot A = CosA/Sin A that at last you will get 2/cosA that is equal to 2secA
  • 3 answers

Manpreet Kaur 6 years, 9 months ago

Use section formula

Parul Sharma 6 years, 9 months ago

By using section formula m1x2+m2x1/m1+m2 and m1x2+m2x1/m1+m2 For.x axis 4=k(6)+1(4)/k+1 4=6k+4/k+1 4k+4=6k+4 4k-6k=4-4 -2k=0 K=0 For y axis K(-3)+1(3)/k+1=m -3k+3/k+1=m Put k =0 -3(0)+3/3+1 =m 3/4=m Hence'. m=3/4 and k=0.

@ __R Rajput? 6 years, 9 months ago

Use the formula of. Area of triangle
  • 1 answers

Sia ? 6 years, 4 months ago

Let us prove {tex}\sqrt 5 {/tex} irrational by contradiction.
Let us suppose that {tex}\sqrt 5 {/tex} is rational. It means that we have co-prime integers a and b (b ≠ 0)
Such that {tex}\sqrt 5 = \frac{a}{b}{/tex}
{tex}\Rightarrow {/tex}  b {tex}\sqrt 5 {/tex}=a
Squaring both sides, we get
{tex}\Rightarrow {/tex} 5b 2 =a 2 ... (1)
It means that 5 is factor of a2
Hence, 5 is also factor of a by Theorem. ... (2)
If, 5 is factor of a , it means that we can write a = 5c for some integer c .
Substituting value of a in (1) ,
5b2 = 25c2
⇒ b2 =5c2
It means that 5 is factor of b2 .
Hence, 5 is also factor of b by Theorem. ... (3)
From (2) and (3) , we can say that 5 is factor of both a and b .
But, a and b are co-prime .
Therefore, our assumption was wrong. {tex}\sqrt 5 {/tex} cannot be rational. Hence, it is irrational.

  • 1 answers

Ram Kushwah 6 years, 9 months ago

Let us assume that {tex}\sqrt 2{/tex} is rational

so let {tex}\sqrt 2{/tex} ={tex}\frac pq{/tex}

where p and q are integers and also let p and q are not having any common factor

 {tex}\begin{array}{l}2=\frac{\mathrm p^2}{\mathrm q^2}\\\mathrm p^2=2\mathrm q^2---(1)\\\mathrm{Hence}\;\mathrm p^{\;2}\;\mathrm{is}\;\mathrm{divisble}\;\mathrm{by}\;2\\\mathrm{so}\;\mathrm p^\;\;\mathrm{is}\;\mathrm{divisble}\;\mathrm{by}\;2---(2)\\\mathrm{let}\;\mathrm p=2\mathrm t\;(\;\mathrm t\;\;\mathrm{is}\;\mathrm a\;\mathrm{positive}\;\mathrm{integer})\\\mathrm{So}\;\mathrm{from}(1)\\2\mathrm q^2=4\mathrm t^2\\\mathrm q^2=2\mathrm t^2\\\mathrm{Hence}\;\mathrm q^{\;2}\;\mathrm{is}\;\mathrm{divisble}\;\mathrm{by}\;2\\\mathrm{so}\;\mathrm q^\;\;\mathrm{is}\;\mathrm{divisble}\;\mathrm{by}\;2---(3)\end{array}{/tex}

From (2) and (3) it follows that

p and q both having 2 as the common factor

But this makes wrong our assumption that p and q are not having any common factor

This has come as we assumed that {tex}\sqrt 2{/tex} is rational.

Hence {tex}\sqrt 2{/tex} is a irrational number

  • 1 answers

Ram Kushwah 6 years, 9 months ago

Let angle of arc ={tex}\theta{/tex}

{tex}\begin{array}{l}\mathrm{Length}\;\mathrm{of}\;\mathrm{arc}=\frac{\mathrm\theta}{360}\times2\mathrm{πr}\\\mathrm{so}\;\frac{\mathrm\theta}{360}\times2\mathrm\pi\times6=12\\\frac{\mathrm{θπ}}{360}=1.....(1)\\\mathrm{now}\;\mathrm{area}\;\mathrm{of}\;\mathrm{sector}\\=\frac{\mathrm\theta}{360}\times\mathrm{πr}^2=1\times\mathrm r^2=\mathrm r^2\;(\;\mathrm{from}\;(1))\\=6^2=36\;\mathrm{cm}^2\end{array}{/tex}

  • 1 answers

#@Prince Arya 6 years, 9 months ago

Let the 1st term be 'a' and common difference be 'd'. No.of terms,n=37 N+1/2=19 Three middle term are 18th,19th and 20th According to questions (a+17d)+(a+18d)+(a+19d)=225 3a+54d=225 a+18d=75 i.e.a=75-18d NOW, sum of last three term i.e. (a+34d)+(a+35d)+(a+36d)=429 a+35d =143 75-18d+35d=143 16d=64 d=4 a=75-18×4=3 AP=3,7,11.....
  • 1 answers

Sia ? 6 years, 4 months ago

Given: ABCD is a quadrilateral circumscribing a circle whose centre is O.
To prove:

  1. {tex}\angle{/tex}AOB + {tex}\angle{/tex}COD = 180o
  2. {tex}\angle{/tex}BOC + {tex}\angle{/tex}AOD = 180o

Construction: Join OP, OQ, OR and OS.
 
Proof: Since tangents from an external point to a circle are equal.
{tex}\therefore{/tex} AP = AS,
BP = BQ ........ (i)
CQ = CR
DR = DS
In {tex}\triangle{/tex}OBP and {tex}\triangle{/tex}OBQ,
OP = OQ [Radii of the same circle]
OB = OB [Common]
BP = BQ [From eq. (i)]
{tex}\therefore{/tex} {tex}\triangle{/tex}OPB {tex}\cong{/tex} {tex}\triangle{/tex}OBQ [By SSS congruence criterion]
{tex}\therefore{/tex} {tex}\angle{/tex}1 = {tex}\angle{/tex}2 [By C.P.C.T.]
Similarly, {tex}\angle{/tex}3 = {tex}\angle{/tex}4, {tex}\angle{/tex}5 = {tex}\angle{/tex}6, {tex}\angle{/tex}7 = {tex}\angle{/tex}8
Since, the sum of all the angles round a point is equal to 360o.
{tex}\therefore{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}2 + {tex}\angle{/tex}3 + {tex}\angle{/tex}4+ {tex}\angle{/tex}5 + {tex}\angle{/tex}6 + {tex}\angle{/tex}7 + {tex}\angle{/tex}8 = 360o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}4+ {tex}\angle{/tex}5 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8 + {tex}\angle{/tex}8 = 360o
{tex}\Rightarrow{/tex}  2 ({tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8)  = 360o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8 = 180o
{tex}\Rightarrow{/tex} ({tex}\angle{/tex}1 + {tex}\angle{/tex}5)  + ({tex}\angle{/tex}4 + {tex}\angle{/tex}8) = 180o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}AOB + {tex}\angle{/tex}COD = 180o
Similarly we can prove that
{tex}\angle{/tex}BOC + {tex}\angle{/tex}AOD = 180o

  • 2 answers

Mona Sharma ? 6 years, 9 months ago

Thanks to answer. ?

Yash Malviya 6 years, 9 months ago

No it depends upon you that you want to solve miscellaneous questions. Its not compulsory
  • 2 answers

Sahil Rajput 6 years, 9 months ago

2016 ke paper me hai ja ke phle dekh

Khushi Agrawal 6 years, 9 months ago

Ye question pichle 10 saalon m na puccha gya aur n hi puccha jaega
  • 1 answers

Ram Kushwah 6 years, 9 months ago

32760 = 23 X 32 X 5 X 7 X 13

  • 1 answers

Ram Kushwah 6 years, 9 months ago

{tex}\begin{array}{l}\text{∠A=57°,∠B=∠E=83°}\\\text{So ∠C=180-(∠A+∠B)}\\\text{=180-(57+83)=180-140=40°}\end{array}{/tex}

  • 2 answers

Ranganath Gowda 6 years, 9 months ago

Product of zeros=c÷a 6÷-2 -3

Siddi Reddy Raghunatha Reddy 6 years, 9 months ago

By factorisation 2
  • 3 answers

#@Prince Arya 6 years, 9 months ago

It's same as x,y,a,b ..that we use in algebraic expression

Harsha Asiwal 6 years, 9 months ago

General referral for any of the angles

Gungun ? 6 years, 9 months ago

Name of angle
  • 1 answers

Sahil Singh 6 years, 9 months ago

With pencil
  • 2 answers

Sarthak Paliwal 6 years, 9 months ago

Is given in ncert book

Moyottil Shifu 6 years, 9 months ago

You not write this on your notebook
  • 1 answers

Zarfa Umer 6 years, 9 months ago

Step Deviation Method - Mean= a+(f×u/f)×h Where,a=arbitrary value chosen somewhre in middle of xi h=class size u=xi-a/h Assumed mean-Mean=a+f×d/f Where,a=refer to above d=xi-a

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App