No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Krishna Yadav 6 years, 9 months ago

there is no formula for this_ Method is prime factorisation
  • 3 answers

Shraddha Gupta 6 years, 9 months ago

The probability of Sunday is equal to 1/7

Samyukta ... 6 years, 9 months ago

2/7...

Eliza ? 6 years, 9 months ago

2/7
  • 2 answers

Usha ❤❤❤ 6 years, 9 months ago

Proof:we know that length of tangent drawn from ext. point are equal ..ye is se proof hoga..isse m detail me likh kr kaisr btau

Ashwani Maurya 6 years, 9 months ago

AQ+AS+PB+ps+cp+cs+qd+pd they have prove that AB+CD=BC+DA
  • 2 answers

Awesome_Rose? Choudhary 6 years, 9 months ago

Your welcome

Awesome_Rose? Choudhary 6 years, 9 months ago

It may be come
  • 2 answers

Honey ??? 6 years, 9 months ago

K=-3

Awesome_Rose? Choudhary 6 years, 9 months ago

Please answer my question
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Construction:

Steps of construction:

  1. Draw a line segment {tex}AB = 6 \ cm.{/tex}
  2. At A, construct {tex}\angle{/tex}{tex}BAZ{/tex} = {tex}30 ^ { \circ }{/tex} and at B, construct {tex}\angle{/tex}{tex}ABY {/tex}{tex}60 ^ { \circ }{/tex}
    Suppose AZ and BY intersect at C.
    {tex}\triangle{/tex}{tex}ABC {/tex} so obtained is the given triangle.
  3. Below AB, make an acute {tex}\angle{/tex}BAX.
  4. Along AX, mark off 8 points {tex}B_1, B_2, B_3, B_4, B_5, B_6, B_7, B_8{/tex}
    such that {tex}AB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7 = B_7B_8{/tex}
  5. Join B6B.
  6. From B8, draw {tex}B_8B'||B_6B {/tex} meeting AB produced at B'.
  7. From B', draw B'C'{tex}\|{/tex}BC, meeting AZ at C'.
    Thus, {tex}\triangle{/tex}AB'C' is the required similar triangle.
  • 1 answers

Sia ? 6 years, 4 months ago

Let the given points are A(6,-6), B(3,-7), C(3,3)
And P(x,y) be the centre of the circle. So, AP = BP = CP (radii of the circle)

Taking AP = BP and Squaring both sides, we get,
{tex}\Rightarrow A P ^ { 2 } = B P ^ { 2 }{/tex}
{tex}\Rightarrow ( x - 6 ) ^ { 2 } + ( y + 6 ) ^ { 2 } = ( x - 3 ) ^ { 2 } + ( y + 7 ) ^ { 2 }{/tex}(by using distance formula)
{tex}\Rightarrow x ^ { 2 } - 12 x + 36 + y ^ { 2 } + 12 y + 36{/tex} ={tex}x ^ { 2 } - 6 x + 9 + y ^ { 2 } + 14 y + 49{/tex}
{tex}\Rightarrow - 12 x + 6 x + 12 y - 14 y + 72 - 58 = 0{/tex}
{tex}\Rightarrow - 6 x - 2 y + 14 = 0{/tex}
{tex}\Rightarrow 3 x + y - 7 = 0{/tex} ……….(i)

Again, taking BP = CP and squaring both sides, we get,
{tex}\Rightarrow B P ^ { 2 } = C P ^ { 2 }{/tex}
{tex}\Rightarrow ( x - 3 ) ^ { 2 } + ( y + 7 ) ^ { 2 } = ( x - 3 ) ^ { 2 } + ( y - 3 ) ^ { 2 }{/tex}
{tex}\Rightarrow x ^ { 2 } - 6 x + 9 + y ^ { 2 } + 14 y + 49{/tex} ={tex}x ^ { 2 } - 6 x + 9 + y ^ { 2 } - 6 y + 9{/tex}
{tex}\Rightarrow - 6 x + 6 x + 14 y + 6 y + 58 - 18 = 0{/tex}
{tex}\Rightarrow 20 y + 40 = 0{/tex}
{tex}\Rightarrow y = - 2{/tex}

Putting the value of y in eq. (i),
{tex}3x + y - 7 = 0{/tex}
{tex}\Rightarrow 3 x = 9{/tex}
{tex}\Rightarrow x = 3{/tex}
Hence the coordinates of P i.e. centre of circle are (3,-2).

  • 2 answers

Ishant Kumawat 6 years, 9 months ago

This is wrong

Aryan Yadav 6 years, 9 months ago

Sec + tan=p 1/cos+sin/cos=p Sin=pcos-1 We know that cosec =1/sin Therefore,cosec=1/pcos-1
  • 2 answers

Usha ❤❤❤ 6 years, 9 months ago

I think Google pr mil jayenge..bt pichle saal hi to board pattern chnge hua h to nxt year k sample paper hi bst choice h

Rajputana Rajputana 6 years, 9 months ago

Yes
  • 3 answers

Vaibhav Verma 6 years, 9 months ago

If the series is in ascending order then it is cf &if not it is frequency

Shashi Prabha 6 years, 9 months ago

if table is less than type then given frequency is cf. otherwise it is f. in morethan type it is not f.

Alok Kumar 6 years, 9 months ago

Commulative frequency
  • 2 answers

Alok Kumar 6 years, 9 months ago

Here; quadratic equation is in the form of ax sqaure +bx +c =0..then..a=(b-c),b=(c-a),c=(a-b)

Diya Namdev 6 years, 9 months ago

(b-c)+(a-b) b+b=a+c 2b=a+c
  • 3 answers

Kaustubh Pathade 6 years, 9 months ago

How

Satyanarayan Sharma In 6 years, 9 months ago

Let the consecutive interger is x

Honey ??? 6 years, 9 months ago

2,6,10,14
  • 1 answers

Sia ? 6 years, 4 months ago


Let PQ be the ladder such that is top Q is on the wall OQ.
The ladder is pulled away from the wall through a distance a, so Q slides and takes position Q'.
Clearly, {tex}PQ = P'Q'.{/tex}
In {tex}\Delta 's{/tex} {tex}POQ \ and \ P'OQ', {/tex}we have
{tex}\sin \alpha = \frac{{OQ}}{{PQ}},\cos \alpha = \frac{{OP}}{{PQ}},\sin \beta = \frac{{OQ'}}{{P'Q'}},\cos \beta = \frac{{OP'}}{{P'Q'}}{/tex}
{tex} \Rightarrow \sin \alpha = \frac{{b + y}}{{PQ}},\cos \alpha \frac{x}{{PQ}},\sin \beta = \frac{y}{{PQ}},\cos \beta = \frac{{a + x}}{{PQ}}{/tex}
{tex} \Rightarrow \sin \alpha - \sin \beta = \frac{{b + y}}{{PQ}} - \frac{y}{{PQ}}{/tex} and 
{tex}\cos \beta - \cos \alpha = \frac{{a + x}}{{PQ}} - \frac{x}{{PQ}}{/tex}
{tex} \Rightarrow \sin \alpha - \sin \beta = \frac{b}{{PQ}}{/tex} and 
{tex}\cos \beta - \cos \alpha = \frac{a}{{PQ}}{/tex}
{tex} \Rightarrow \frac{a}{b} = \frac{{\cos \alpha - \cos \beta }}{{\sin \beta - \sin \alpha }}{/tex}

  • 0 answers
  • 0 answers
  • 1 answers

Honey ??? 6 years, 9 months ago

1/16,1/25
  • 1 answers

Amit Kumar 6 years, 9 months ago

When dava
  • 3 answers

Bahubali Gaming 6 years, 9 months ago

Not sure

Bahubali Gaming 6 years, 9 months ago

I think so Area of ?=0 Means co ordinate geometry wala area of triangle

Siddhartha Jain 6 years, 9 months ago

Area of triangle ka jo formula hota h coordinate m whi h

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App