No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Khushi ? 6 years, 9 months ago

Continue ur ques...
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}\sin ^ { 6 } \theta + \cos ^ { 6 } \theta = 1 - 3 \sin ^ { 2 } \theta \cos ^ { 2 } \theta{/tex}
{tex}\text { L.H.S. } = \sin ^ { 6 } \theta + \cos ^ { 6 } \theta{/tex}
{tex}= \left( \sin ^ { 2 } \theta \right) ^ { 3 } + \left( \cos ^ { 2 } \theta \right) ^ { 3 }{/tex}
{tex}= \left( \sin ^ { 2 } \theta + \cos ^ { 2 } \theta \right) \left( \sin ^ { 4 } \theta + \cos ^ { 4 } \theta - \sin ^ { 2 } \theta \cos ^ { 2 } \theta \right){/tex}{tex}\left[ \because a ^ { 3 } + b ^ { 3 } = ( a + b ) \left( a ^ { 2 } + b ^ { 2 } - a b \right) \right]{/tex}
{tex}= 1 \left( \sin ^ { 4 } \theta + \cos ^ { 4 } \theta + 2 \sin ^ { 2 } \theta \cdot \cos ^ { 2 } \theta - 2 \sin ^ { 2 } \theta \cos ^ { 2 } \theta - \sin ^ { 2 } \theta \cos ^ { 2 } \theta \right]{/tex}{tex}\text { since, } \sin ^ { 2 } A + \cos ^ { 2 } A = 1{/tex}
{tex}= \left( \sin ^ { 2 } \theta + \cos ^ { 2 } \theta \right) ^ { 2 } - 3 \sin ^ { 2 } \theta \cos ^ { 2 } \theta{/tex}
{tex}= 1 - 3 \sin ^ { 2 } \theta \cos ^ { 2 } \theta{/tex}
= R.H.S. proved.

  • 1 answers

✨Raagini ?? 6 years, 9 months ago

Given: In an equilateral triangle ΔABC. The side BC is trisected at D such that BD = (1/3) BC. To prove: 9AD2 = 7AB2 Construction: Draw AE ⊥ BC. Proof : In a ΔABC and ΔACE AB = AC ( Given) AE = AE ( common) ∠AEB = ∠AEC = 90° ∴ ΔABC ≅ ΔACE ( For RHS criterion) BE = EC (By C.P.C.T) BE = EC = BC / 2 In a right angled triangle ADE AD2 = AE2 + DE2 ---------(1) In a right angled triangle ABE AB2 = AE2 + BE2 ---------(2) From equ (1) and (2) we obtain ⇒ AD2 - AB2 = DE2 - BE2 . ⇒ AD2 - AB2 = (BE – BD)2 - BE2 . ⇒ AD2 - AB2 = (BC / 2 – BC/3)2 – (BC/2)2 ⇒ AD2 - AB2 = ((3BC – 2BC)/6)2 – (BC/2)2 ⇒ AD2 - AB2 = BC2 / 36 – BC2 / 4 ( In a equilateral triangle ΔABC, AB = BC = CA) ⇒ AD2 = AB2 + AB2 / 36 – AB2 / 4 ⇒ AD2 = (36AB2 + AB2– 9AB2) / 36 ⇒ AD2 = (28AB2) / 36 ⇒ AD2 = (7AB2) / 9 9AD2 = 7AB2 .
  • 1 answers

Mehak Rathore 6 years, 9 months ago

In this question a7 can be written as a+6d where a is first term and d is common different So a+6d=4 a+6(-4)=4 a-24=4 a=4+24 a=28. So first term is 28
  • 1 answers

✨Raagini ?? 6 years, 9 months ago

Given that Area of the square formed by bending a copper wire = 484cm^2. We know that side of the square = s^2                                  s^2 = 484                                  s = 22cm. We know that perimeter of the square = 4 * s                                                                  = 4 * 22                                                                  = 88cm. Therefore the length of the wire = 88cm. Now, Given that the same wire is bent into a form of circle. Circumference of circle = Length of wire 2pir = 88 2 * 22/7 * r = 88 44/7 * r = 88 44 * r = 88 * 7 44 * r = 616 r = 616/44 r = 14. We know that Area of circle = pir^2                                                 = 22/7 * (14)^2                                                 = 22 * 14 * 2                                                 = 616cm^2. Therefore the area enclosed by the circle = 616cm^2. Hope this helps! ---------------- Gud Luck
  • 1 answers

✨Raagini ?? 6 years, 9 months ago

9AD²=7AB² wala question
  • 1 answers

Ram Kushwah 6 years, 9 months ago

Q is wrong

  • 2 answers

Sparsh Thakur 6 years, 9 months ago

How

Rohit Sreeram 6 years, 9 months ago

2
  • 2 answers

Viraj Shinde 6 years, 9 months ago

Show me the solution

Ani J 6 years, 9 months ago

Exercise 13.3 ka question 8 ke solution jesa ha bas values change karna ha
  • 1 answers

Ram Kushwah 6 years, 9 months ago

If x-1, x-4 and x-7 are in AP

then x-4 will be average of x-1 and x-7

[(x-1)+(x-7)]*1/2=x-4

2x-1-7=2(x-4)

2x-8=2x-8

2x-2x=-8+8

0=0

Hence there is no solution

Statement in your question is not a question this shows that

x-1, x-4 and x-7 are in AP  for all real values of x

So x =.-infinite........-5,-4,-3,-2,-1,0,1,2,3.......................infinite

 

  • 2 answers

Rohit Sreeram 6 years, 9 months ago

0.115
0.115
  • 5 answers

Lakshmi Mohan 6 years, 9 months ago

1/3

Rohit Sreeram 6 years, 9 months ago

3 possibilities of one boy, 3 possibilities of 2 boys, 1 possibility of 3 boys
How 7/8

Rohit Sreeram 6 years, 9 months ago

7/8
1/2
  • 1 answers
Ncert me dekho
  • 1 answers

Sia ? 6 years, 4 months ago

Volume of concrete required to build the first step, second step, third step, ..... (in m2) are
{tex}\frac{1}{4} \times \frac{1}{2} \times 50,\left( {2 \times \frac{1}{4}} \right) \times \frac{1}{2} \times 50,\left( {3 \times \frac{1}{4}} \right) \times \frac{1}{2} \times 50{/tex}
{tex} \Rightarrow \frac{{50}}{8},2 \times \frac{{50}}{8},3 \times \frac{{50}}{8},.....{/tex}
{tex}\therefore {/tex} Total volume of concrete required = {tex}\frac{{50}}{8} + 2 \times \frac{{50}}{8} + 3 \times \frac{{50}}{8} + ....{/tex}
{tex} = \frac{{50}}{8}\left[ {1 + 2 + 3 + .......} \right]{/tex}
Sn{tex}\frac{{n}}{2}{/tex} [(2a + (n - 1)d]
S15  {tex} = \frac{{50}}{8} \times \frac{{15}}{2}\left[ {2 \times 1 + (15 - 1) \times 1} \right]\left[ {\because n = 15} \right]{/tex}
{tex} = \frac{{50}}{8} \times \frac{{15}}{2} \times 16{/tex}
= 750 m3

  • 3 answers

Ani J 6 years, 9 months ago

Uske nicha likha to ha not form examination point of view

Adiii Agrawal 6 years, 9 months ago

Yes

Lakhan Ajmera 6 years, 9 months ago

Ha aata to hai
  • 2 answers

Ram Kushwah 6 years, 9 months ago

AS The man planned to pay Rs 3600 in 40 installmetnts

So S40=3600=40/2(2a+39d)

3600 / 20 = 2a+39d

2a+39d=180 -------(1)

Now as 1/3rd of debt is left to pay,so paid by man

=(1-1/3)*3600=2/3*3600=2400

So S30=2400

30/2(2a+29d)=2400

2a+29d=2400/15

2a+29d=160-------(2)

Now subtracting (02 ) from (1)

10d=20

d=2 Rs

Now putting d=20 in (1)

2a+39*2=180

2a=180-78=102

a=51 Rs

So  first installment =Rs 51

Ramila Jain 6 years, 9 months ago

51
  • 1 answers

Adiii Agrawal 6 years, 9 months ago

see in ncert books page no. 124
  • 1 answers

Ram Kushwah 6 years, 9 months ago

The question is like this:

Show that n2 - 1 is divisible by 8, if n is an odd positive integer

Soln:Any odd positive integer n can be written in form of 4q + 1 or 4q + 3.

 

If n = 4q + 1, then

 n2 - 1 = (4q + 1)2 - 1 = 16q2 + 8q + 1 - 1 = 8q(2q + 1) which is divisible by 8.

If n = 4q + 3,then

 n2 - 1 = (4q + 3)2 - 1 = 16q2 + 24q + 9 - 1 = 8(2q2 + 3q + 1) which is divisible by 8.

 

So,  n2 - 1 is divisible by 8, if n is an odd positive integer.

  • 3 answers

✨Raagini ?? 6 years, 9 months ago

No...justify if needed bt write const

Adiii Agrawal 6 years, 9 months ago

Yes

Khushi ? 6 years, 9 months ago

Yes
  • 2 answers

Ani J 6 years, 9 months ago

Example ka solution dekha bina solve karo nahi to confuse hoga

Ani J 6 years, 9 months ago

Pahle koi ek segment ka area nikalo usse 2 sa multiple karo aur fir usmain area of square add kar do ans aajaayega
  • 1 answers

Sia ? 6 years, 4 months ago


In Triangle APB
Since PA = PB (Tangents from same external point are euqal) 
{tex}\therefore {/tex} {tex}\angle P A B = \angle P B A{/tex}
(Opposite angles to equal sides are equal)

  • 0 answers
  • 1 answers

Ram Kushwah 6 years, 9 months ago

question is wrong

  • 3 answers

Adiii Agrawal 6 years, 9 months ago

0.00230
Right answer

Anjali Singh 6 years, 9 months ago

0.023 is ri8 answer.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App