No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 4 months ago

Let perimeter of first square = x metres
Let perimeter of second square = (x +24) metres
Length of side of first square = {tex}\frac { x } { 4 }{/tex}metres {Perimeter of square = 4 × length of side}
Length of side of second square = {tex}\left( \frac { x + 24 } { 4 } \right){/tex}metres
Area of first square = side × side = {tex}\frac { x } { 4 } \times \frac { x } { 4 } = \frac { x ^ { 2 } } { 16 } m ^ { 2 }{/tex}
Area of second square = {tex}\left( \frac { x + 24 } { 4 } \right) ^ { 2 } m ^ { 2 }{/tex}
According to given condition:
{tex}\frac { x^{ 2 } } { 16 } + \left( \frac { x + 24 } { 4 } \right) ^ { 2 } = 468{/tex} {tex}\Rightarrow \frac { x ^ { 2 } } { 16 } + \frac { x ^ { 2 } + 576 + 48 x } { 16 } = 468{/tex}  
{tex}\Rightarrow \frac { x ^ { 2 } + x ^ { 2 } + 576 + 48 x } { 16 } = 468{/tex}  {tex}\Rightarrow{/tex} 2x2 + 576 + 48x = 468 × 16
{tex}\Rightarrow{/tex} 2x2 +48x + 576 = 7488 {tex}\Rightarrow{/tex} 2x2 + 48x - 6912 = 0
{tex}\Rightarrow{/tex} x2 + 24x - 3456 = 0
Comparing equation x2 + 24x - 3456 = 0 with standard form ax2 + bx + c = 0,
We get a = 1, b = 24 and c = -3456
Applying Quadratic Formula {tex}x = {-b \pm \sqrt{b^2-4ac} \over 2a}{/tex}
{tex}x = \frac { - 24 \pm \sqrt { ( 24 ) ^ { 2 } - 4 ( 1 ) ( - 3456 ) } } { 2 \times 1 }{/tex}

{tex}\Rightarrow x = \frac { - 24 \pm \sqrt { 576 + 13824 } } { 2 }{/tex} 
{tex}\Rightarrow x = \frac { - 24 \pm \sqrt { 14400 } } { 2 } = \frac { - 24 \pm 120 } { 2 }{/tex}

{tex}\Rightarrow x = \frac { - 24 + 120 } { 2 } , \frac { - 24 - 120 } { 2 }{/tex} 
{tex}\Rightarrow{/tex} x = 48, -72
Perimeter of square cannot be in negative. Therefore, we discard x = -72
Therefore, perimeter of first square = 48 metres
And, Perimeter of second square = x + 24 = 48 + 24 = 72 metres
{tex}\Rightarrow{/tex} Side of First square {tex}= \frac { \text { Perimeter } } { 4 } = \frac { 48 } { 4 } = 12 \mathrm { m }{/tex}
And, Side of second Square {tex}= \frac { \text { Permeter } } { 4 } = \frac { 72 } { 4 } = 18 \mathrm { m }{/tex}

  • 1 answers

Rohan Gupta 6 years, 10 months ago

Ap will be 3,6,9... So, sum of first 8 multiples = 8/2*[2(3) + 7(3)] = 4(6 + 21) =108
  • 3 answers

Anisz Bodo 6 years, 10 months ago

What is the total no. of outcomes here?

Khushi ? 6 years, 10 months ago

Not divible by 8=43/49

Khushi ? 6 years, 10 months ago

Divisible by 8=12/98=6/49
  • 2 answers

Anisz Bodo 6 years, 10 months ago

How 0??

Khushi ? 6 years, 10 months ago

0
  • 1 answers

Honey ??? 6 years, 10 months ago

Summation 1/alpha ka mtlb 1/alp. +1/betaa. +1/gama
  • 0 answers
  • 0 answers
  • 1 answers

Md Sohel 6 years, 10 months ago

Do you want it
  • 4 answers

Samyukta ... 6 years, 10 months ago

3rd part..., x+y= 9and 8y-x=0

Siddhartha Jain 6 years, 10 months ago

Are mene aapse apne aap hi solve krne ke lie kha h baaki mujhe aa gye

Samyukta ... 6 years, 10 months ago

2nd part ....x-3y=-10 and x-2y=10

Siddhartha Jain 6 years, 10 months ago

No and thanks
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let the number be (3q + r)
{tex}n = 3 q + r \quad 0 \leq r < 3{/tex}
{tex}\text { or } 3 q , 3 q + 1,3 q + 2{/tex}
{tex}\text { If } n = 3 q \text { then, numbers are } 3 q , ( 3 q + 1 ) , ( 3 q + 2 ){/tex}
{tex}3 q \text { is divisible by } 3{/tex}.
{tex}\text { If } n = 3 q + 1 \text { then, numbers are } ( 3 q + 1 ) , ( 3 q + 3 ) , ( 3 q + 4 ){/tex}
{tex}( 3 q + 3 ) \text { is divisible by } 3{/tex}.
{tex}\text { If } n = 3 q + 2 \text { then, numbers are } ( 3 q + 2 ) , ( 3 q + 4 ) , ( 3 q + 6 ){/tex}
{tex}( 3 q + 6 ) \text { is divisible by } 3{/tex}.
{tex}\therefore \text { out of } n , ( n + 2 ) \text { and } ( n + 4 ) \text { only one is divisible by } 3{/tex}.

  • 2 answers

Md Sohel 6 years, 10 months ago

Depends on question

Rajputana Rajputana 6 years, 10 months ago

Yes
  • 1 answers

Malta Ghodki 6 years, 10 months ago

let a and b are integer where b=2 a=bq+r a=2q+r 0<r<b 0<r<2 Therefore r=0,1 Case1,r=0 a=bq+r a=2q+0 a=2q Case2,r=1 a=bq+r a=2q+1
  • 1 answers

Abhay Modi 6 years, 10 months ago

What is your question?????? sinthita.costhita???
  • 1 answers

Gaurav Seth 6 years, 10 months ago

We know that tangent is always perpendicular to the radius at the point of contact.

So, ∠OAP = 90

We know that if 2 tangents are drawn from an external point, then they are equally inclined to the line segment joining the centre to that point.

So, ∠OPA = 12∠APB = 12×60° = 30°

According to the angle sum property of triangle-

In ∆AOP,∠AOP + ∠OAP + ∠OPA = 180°⇒∠AOP + 90° + 30° = 180°⇒∠AOP = 60°

So, in triangle AOP

tan angle AOP = AP/ OA

√ 3= AP/a

therefore, AP = √ 3a

  • 3 answers

Aarmaan Bedil 6 years, 10 months ago

Mai intelligent na hu........... Too bhai ram ram or yaha se nikal
Ans. Is 4
Tenu ni aanda ans. Yaani tu intelligent ni hai..duffer boy!
  • 1 answers

Gaurav Seth 6 years, 10 months ago

The Theorem

 

D, E, F are mid-points of BC, CA, AB.

AD, BE and CF are medians.

The medians cut each others are centroid  G .

We need to show that:

 

AG : GD = BG : GE = CG : GF = 2 : 1

 

 

 

 

 

Simple Proof

 

Reflect the triangle along AC, you can get a diagram below:

 

 

ABCB1  is a parallelogram.

BEB1  is a straight line .

     Since  CD = AD1  and  CD // AD1

     DCD<st1:chmetcnv hasspace="False" negative="False" numbertype="1" sourcevalue="1" tcsc="0" unitname="a" w:st="on">1A</st1:chmetcnv>  is a parallelogram.  (opposite sides equal and parallel.)

\ DG // CG1 
Since  BD = DC and DG // CG1  
\  BG = GG1   (intercept theorem)

BG : GG1 = 1 : 1

Since  GE = EG1 ,  BG : GE = 2 : 1.

  • 1 answers

Gaurav Seth 6 years, 10 months ago

Given : A circle with centre O touches the sides AB, BC, CD and DA of a quadrilateral ABCD at the points P, Q, R and S respectively.
To prove : ∠AOB + ∠COD = 180°
∠AOD + ∠BOC = 180°

Const. : Join OP, OQ, OR and OS.
Proof : Since, the two tangents drawn from an external point to a circle subtend equal angles at the centre.
∴ ∠1 = ∠2, ∠3 = ∠4, ∠5 = ∠6, ∠7 = ∠8
Since sum of all the angles subtended at a point is 360°.
∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 + ∠8
= 360°
⇒2 ∠2 + 2 ∠3 + 2 ∠6 + 2 ∠7) = 360°
⇒ 2 (∠2 + ∠3 + ∠6 + ∠7) = 360°
⇒ ∠2 + ∠3 + ∠6 + ∠7) = 180°
⇒ (∠6 + ∠7) + (∠2 + ∠3) = 180°
⇒ ∠AOB + ∠COD = 180°
Similarly, we can prove ∠AOD + ∠BOC = 180°

  • 0 answers
  • 3 answers

Gaurav Seth 6 years, 10 months ago

We know that sum = n/2(2a + (n-1) d)

                             0 = n/2(2 * 18 + (n - 1) * (-2))

                             0 = n/2(36-2n+2)

                             0 = 38n - 2n^2

                              2n^2 - 38n = 0

                              2n(n-19) = 0

                                 n - 19 = 0

                                 n = 19.

Gaurav Mehta 6 years, 10 months ago

Ans is 19 term

Aman Ranjan 6 years, 10 months ago

19
  • 0 answers
  • 2 answers

Gaurav Seth 6 years, 10 months ago

Let us assume that Prema invests Rs x @10% and Rs y @8% in the first year.

We know that

Interest =

ATQ,

+=1640

Þ 10x+8y=164000………..(i)

Next,

After interchanging,

+=1600

we get 10y+8x=160000..

8x+10y=160000...(ii)

Adding (i) and (ii)

18x+18y=324000

18x+18y=324000

Þ x + y = 18000 ..(iii)

Subtracting (ii) from (i)

2x-2y=4000

Þ x - y = 2000...(4)

Adding (3) and (4)

2x=20000

Þ x = 10000

Substituting this value of x in (3)

y=8000

So the sums invested in the first year at the rate 10% and 8% are Rs 10000 and Rs 8000 respectively.

Ankita Kumari 6 years, 10 months ago

Please koi ye ques samJhao
  • 2 answers

Gaurav Seth 6 years, 10 months ago

Question: PROVE THAT (sin^8A + cos^8A) = (sin^2A - cos^2A)(1 - 2sin^2Acos^2A)

Answer:

Aman Ranjan 6 years, 10 months ago

Ya baski nahi h Ye question cbse 2013 ka h

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App