No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Beauty Queen? Miss Sweetu? 6 years, 10 months ago

Point of intersection ke coordinate me se jo x- axis ka point ho wahi median hota h. Ex- (14.5,20) median is 14.5

Ship.. ??? 6 years, 10 months ago

14.5
  • 2 answers

Danush Senthil Kumar 6 years, 10 months ago

height of the kite from ground is 55root3 m length of the thread is 110root3 m

D.J Alok 6 years, 10 months ago

SO.....Complete your question......
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

The sequence formed by the given numbers is 103,107,111,115, ...,999.
This is an AP in which a = 103 and d = (107 - 103) = 4.
Let the total number of these terms be n. Then,
Tn = 999 {tex}\Rightarrow{/tex} a + (n-1)d = 999
{tex}\Rightarrow{/tex} 103 + (n -1) {tex}\times{/tex} 4 = 999
{tex}\Rightarrow{/tex} (n-1){tex}\times{/tex}4 = 896 {tex}\Rightarrow{/tex} (n-1) = 224 {tex}\Rightarrow{/tex} n = 225.
{tex}\therefore{/tex} middle term = ({tex}\frac{{n + 1}}{2}{/tex})th term = ({tex}\frac{{225 + 1}}{2}{/tex})th term = 113th term.
T113 = (a + 112d) = (103 +112 {tex}\times{/tex} 4) = 551.
{tex}\therefore{/tex} T112 = (551 - 4) = 547.
So, we have to find S112 and (S225 - S113).
Using the formula Sm = {tex}\frac{m}{2}{/tex}(a + l) for each sum, we get
s112 = {tex}\frac{{112}}{2}{/tex}(103+ 547) = (112{tex}\times{/tex}325) = 36400
(S225 - S113) = {tex}\frac{{225}}{2}{/tex}(103 + 999) - {tex}\frac{{113}}{2}{/tex}(103 + 551)
= (225 {tex}\times{/tex} 551)-(113 {tex}\times{/tex} 327)
= 123975 - 36951 =87024.
Sum of all numbers on LHS of the middle term is 36400.
Sum of all numbers on RHS of the middle term is 87024.

  • 1 answers

Gaurav Seth 6 years, 10 months ago

Σfi = 41+p 
Σfixi = 303+9p

Mean = Σfixi / Σfi

7.5 = (303+9p) / (41 +p)
7.5(41 +p) = 303 +9p
307.5 +7.5 p = 303 +9p
307.5 -  303 = 9p - 7.5 p
4.5 = 1.5 p
p = 4.5 / 1.5 = 3

P = 3

Hence, the value of p is 3.

  • 1 answers

Sia ? 6 years, 4 months ago


Let the radius of original cone be r2
Radius of cut off cone be r1
According to the question
Height of the original cone = 10 cm (given)
The cone is cut off from the midpoint of the height,
therefore, height the cone cut off = 5 cm
{tex}\Delta A O C \sim \Delta AO' D{/tex}
OA = Radius of original cone = r2
O'A' = Radius of cutoff cone = r1
Ratio of radius of two cones = Ratio of the height of cones
{tex}\therefore \quad \frac { A O } { A' O ^ { \prime } } = \frac { r _ { 2 } } { r _ { 1 } } = \frac { 10 } { 5 }{/tex}
{tex}\Rightarrow \quad r _ { 2 } = 2 r _ { 1 }{/tex}
Radius of original cone = 2 (radius of the cut off cone)
Volume of the cut off cone {tex}= \frac { 1 } { 3 } \pi r _ { 1 } ^ { 2 } \times 5{/tex}
{tex}= \frac { 5 } { 3 } \pi r _ { 1 } ^ { 2 }{/tex} cubic units
Volume of original cone {tex}= \frac { 1 } { 3 } \pi \left( 2 r _ { 1 } \right) ^ { 2 } \times 10{/tex}
{tex}= \frac { 40 } { 3 } \pi r _ { 1 } ^ { 2 }{/tex} cubic units
Volume of frustum = Volume of an original cone - Volume of cut off cone
{tex}= \frac { 40 } { 3 } \pi r _ { 1 } ^ { 2 } - \frac { 5 } { 3 } \pi r _ { 1 } ^ { 2 }{/tex}
{tex}= \frac { 35 } { 3 } \pi r _ { 1 } ^ { 2 }{/tex} cubic units
Required ratio = Volume of frustum: Volume of cut off cone
{tex}= \frac { 35 \pi r _ { 1 } ^ { 2 } } { 5 \pi r _ { 1 } ^ { 2 } } = \frac { 7 } { 1 }{/tex}
Therefore, the required ratio = 7: 1.

  • 3 answers

Pr!Nce Pr@J@P@T! 6 years, 10 months ago

πr^2

Thanks Ki Baarish ........???? 6 years, 10 months ago

Pi r^2

Affu 😊 6 years, 10 months ago

Circle???
  • 1 answers

Sia ? 6 years, 4 months ago

Given, speed of boat in still water = 8 Km/hr. Let the speed of the stream be x km/hr. Then,
Speed of boat in downstream = (8 + x) km/hr
Speed of boat in upstream  = (8 - x) km/hr
We know that time taken to cover 'd' km with speed 's' km/hr is  {tex} \frac ds{/tex}

So,Time taken by the boat to go 15 km upstream {tex} = \frac{{15}}{{8 - x}}{/tex} hours.
&,   Time taken by the boat to 22 km downstream {tex} = \frac{{22}}{{8 + x}}{/tex} hours.
It is given that the total time taken by boat to go 15 km upstream & 22 km downstream is 5 hours.
{tex}\therefore \frac{{15}}{{8 - x}} + \frac{{22}}{{8 + x}} = 5{/tex}
{tex} \Rightarrow \frac{{15(8 + x) + 22(8 - x)}}{{(8 - x)(8 + x)}} = 5{/tex}
{tex} \Rightarrow \frac{{120 + 15x + 176 - 22x}}{{{8^2} - {x^2}}} = 5{/tex}
{tex} \Rightarrow \frac{{ - 7x + 296}}{{64 - {x^2}}} = 5{/tex}
{tex}\Rightarrow{/tex} -7x + 296 = 5(64 - x2)
{tex}\Rightarrow{/tex} -7x + 296 = 320 - 5x2
{tex}\Rightarrow{/tex} 5x2 - 7x + 296 - 320 = 0
{tex}\Rightarrow{/tex} 5x2 - 7x - 24 = 0
{tex}\Rightarrow{/tex} 5x2 - 15x + 8x - 24 = 0
{tex}\Rightarrow{/tex} 5x(x - 3) + 8(x - 3) = 0
{tex}\Rightarrow{/tex} (5x + 8)(x- 3) = 0
{tex}\Rightarrow{/tex} x - 3 = 0 [{tex}\because{/tex} Speed can not be negative {tex}\therefore{/tex} 5x + 8 {tex}\ne{/tex} 0]
{tex}\Rightarrow{/tex} x = 3
Hence, the speed of the stream is 3 km/hr.

  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Aparna Sinha ?? 6 years, 10 months ago

22/7 (28^2+7^2+45×(28+7)=22/7 (784+49+45×35)=22/7 (2408) = 7568 volume
  • 1 answers

Rajputana Rajputana 6 years, 10 months ago

Book me
  • 1 answers

Danush Senthil Kumar 6 years, 10 months ago

it has only 2 solutions
  • 1 answers

Gaurav Seth 6 years, 10 months ago

By middle term splitting we can write it as, 
x2+1200x-800x-960000 
x (x+1200)-800(x+1200) 
(x-800)(x+1200) 
Equating 
x-800=0 
x=800 

x+1200=0 
x=-1200 

  • 1 answers

Gaurav Seth 6 years, 10 months ago

Let :-


a = n³ - n


= n(n² - 1) 


= n(n - 1)(n + 1)


= (n - 1)n (n + 1)


1) Now out of three (n - 1),n and (n + 1) one must be even so a is divisible by 2


2) Also (n - 1),n and (n + 1) are three consecutive integers thus as proved a must be divisible by 3 


From (1) and (2)


a must be divisible by 2 × 3 = 6


Hence n³ - n is divisible by 6 for any positive integer n

  • 1 answers

Garima Choudhary 6 years, 10 months ago

Perimeter of triangle ABC =AB+BC+AC, We know that AB= AF+BF , BC =BD+ CD, AC= AE+ CE, but the tangents are equal so, AF=AE_ _ _ _ _ (1) BD=BF_ _ _ _ _ (2) CE=CD_ _ _ _ _(3) Add eq. 1, 2 and 3 we get , AF+BD+CE= AE+BF+CD first condition proved . We know that perimeter of triangle ABC , AB+BC+CA=P AF+BF+BD+CD+AE+CE =P AF +AF+BD+BD+CE+CE =P 2(AF+BD+CE)= P SO, AF +BD+CE=P/2 i.e half of perimeter . Hence proved .
  • 1 answers

Garima Choudhary 6 years, 10 months ago

Yrr ques pura likho
  • 2 answers

Gaurav Seth 6 years, 10 months ago

HCF of 96 and 404 by prime factorisation method:-
Since, 96 = 2 × 2 × 2 × 2 × 2 × 3
and, 404 = 2 × 2 × 101
So, HCF of 96 and 404 = Product of common prime factors
                                  = 2 × 2 = 4

Garima Choudhary 6 years, 10 months ago

H.C.F will be 4
  • 1 answers

Anjali Kumari? 6 years, 10 months ago

Median me median cls kaise find krte h?? Kahi h n/2 krke CF me dekhte h usse jyada. Or kahi median allready diya hua h to usko cls interval me dekhte h ??
  • 1 answers

Vishakha Singhal 6 years, 10 months ago

Xsq + 5x + 4x + 20 = 0 x( x + 5 ) +4 ( x + 5 ) = 0 ( x + 5 ) ( x + 4 ) = 0 x = -5 & x = -4??
  • 2 answers

Siddhartha Jain 6 years, 10 months ago

Sb kr le bhai

Garima Choudhary 6 years, 10 months ago

Konsi bhai
  • 1 answers

Thanks Ki Baarish ........???? 6 years, 10 months ago

Distance covered in 5000 revolutions = 11 km = 11,000 m = 11,00,000 cm Distance covered in 1revolution = 11,00,000 / 5000 = 220 cm Distance covered in 1 revolution = Circumference of the wheel of the bicycle Let the radius of the wheel be 'r' cm. ⇒ 2 x 22/7 x r = 220 ⇒ r = 220 x 7/22 x 1/2 ⇒ r = 35 cm Hence, the diameter of the wheel is 70 cm. All the Best??for ur exams @diti
  • 1 answers

Sia ? 6 years, 4 months ago

Let{tex} AB\ and \ CD{/tex} are towers of height {tex} h_1 \ and \ h_2{/tex} respectively.
If E is the midpoint of BD then {tex}BE = DE = x{/tex}
                                                  
In right {tex}\triangle{/tex}ABE 
{tex}\frac { h _ { 1 } } { x }{/tex}{tex} = tan 60° {/tex}
{tex}\Rightarrow{/tex} h1{tex}\sqrt { 3 } x{/tex}
In right {tex}\triangle{/tex}CDE  {tex}\frac { h _ { 2 } } { x }{/tex}= tan 30°   {tex}\Rightarrow h _ { 2 } = \frac { x } { \sqrt { 3 } }{/tex}
Now  {tex}\frac { h _ { 1 } } { h _ { 2 } } = \frac { \sqrt { 3 } x } { \frac { x } { \sqrt { 3 } } } = \frac { 3 } { 1 }{/tex} {tex}\Rightarrow h _ { 1 } : h _ { 2 } = 3 : 1{/tex}

  • 3 answers

Garima Choudhary 6 years, 10 months ago

The median will be x. samyukta sis ye 0 nahi hogi

Vanshika Namdev 6 years, 10 months ago

Median will be y

Samyukta ... 6 years, 10 months ago

0

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App